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Abstract

Stationary probabilities are fundamental in response to various measures

of performance in queueing networks. Solving stationary probabilities

in Quasi-Birth-and-Death (QBD) with phase-type distribution normally

are dependent on the structure of the queueing network. In this thesis,

a new computing scheme is developed for attaining stationary probabili-

ties in queueing networks with multiple servers. This scheme provides a

general approach of considering the complexity of computing algorithm.

The result becomes more significant when a large matrix is involved in

computation. After determining the stationary probability, we study the

departure process and the moments of inter-departure times. We com-

pute the moments of inter-departure times and the variance by applying

two numerical methods (Matlab and Promodel). The lagk correlation

of inter-departure times is also introduced in the thesis. The proposed

approach is proved theoretically and verified with illustrative examples.
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中文摘要 

    穩定狀態機率是讓我們了解各種排隊網絡性能的基礎。在擬生死過程

(Quasi-Birth-and-Death) Phase-type 分配中求得穩定狀態機率，通常是依賴排隊

網絡的結構。在這篇論文中，我們提出了一種計算方法-LU 分解，可以求得在排

隊網絡中有多台服務器的穩定狀態機率。此計算方法提供了一種通用的方法，使

得複雜的大矩陣變成小矩陣，並減低計算的複雜性。當需要計算一個複雜的大矩

陣，這個成果變得更加重要。文末，我們提到了離開時間間隔，並用兩種方法 

(Matlab 和 Promodel) 去計算期望值和變異數，我們發現兩種方法算出的數據相

近，接著計算離開顧客的時間間隔相關係數。最後，我們提供數值實驗以計算不

同服務器個數產生的離去過程和相關係數，用來說明我們的方法。 
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Chapter 1

Introduction

The Markovian arrival process (MAP) is a generalization of the Poisson process,

where the arrivals are governed by a Markov chain [10]. We consider a semi

MAP/M/n queueing system, where customers arrive at the system according to

a phase-type process but may leave the system without services. The family of

phase-type distributions is widely used in algorithmic probability [5]. A continu-

ous time phase-type distribution is the distribution of the time until absorption in

an absorbing Markovian process. We assume the inter-arrival time follows a typ-

ical MAP but the arrival rate is smaller since the renege occurs. All n servers of

the system are identical, and their service times are independent and identically

distributed (i.i.d.) random variables following exponential distributions. Each in-

coming customer receives service immediately if he/she finds an idle server upon

arrival.

AlthoughMAP/M/n queues have been studied extensively by many researchers,

analytical solutions for the stationary probability have not yet been studied com-

prehensively in the literature [5]. In this thesis, we study the stationary distribution

of such a semi MAP/M/n queueing system with multiple servers. We compute the

stationary probability by applying the matrix geometric solution procedure in [8],

which will be combined with Ramaswami’s formula [7] and block LU factorization [6]

in this thesis. The main contribution in the thesis is to present a matrix decompo-

1
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sition approach for the stationary probability in a phase-type MAP/M/n queueing

model. Through solving the system of sub-matrices by using Matrix-Geometric

Solution Method, we obtain the stationary probability.

Matrix analytic methods are popular as modeling tools because they give one

the ability to construct and analyze a wide class of queueing models in a unified and

algorithmically tractable way [7]. The Matrix-Geometric Solution Method [5, 8]

relies on identifying two parts within the structure of the underlying continuous

time Markov chain, including the initial/boundary part and the repetitive part. The

initial part has a non-regular structure and each component in it must be represented

in detail [8]. The repetitive part has a regular structure and can be represented in

stochastic process algebras as a composition of several components. In Matrix-

Geometric Solution Method, the infinitesimal generator matrix is decomposed into

sub-matrices, with each one of them representing the transition rates in a particular

area within a given part, or between them [5, 8]. The size of the state space would

be reasonably small compared with the size of the infinitesimal generator matrix of

the Markovian process even if the system is infinite [3].

The inter-departure times of customers leaving the system are correlated [4].

In the standard network node approximation approach, the departure process from a

workstation system is normally approximated by assuming that these inter-departure

times are independent and identically distributed (i.i.d.). However, this i.i.d. as-

sumption allows for a simple approximation [12] of the squared coefficient of variation

(SCV) of departure process (C2
d) as a function of the systems utilization (u) and the

arrival and service processes SCV’s (C2
a , C

2
s ) for a G/G/n queue as

C2
d = (1− u2)(C2

a − 1) + u2(C2
s − 1)/

√
n.

Bitran and Dasu [1] developed a phase-type distribution representation of the

departure process from a single server system and provided moments of the inter-

departure times of a
∑
Phi/Ph/1 queue. We extend those results to get the moment

of inter-departure times and correlations between successive departures.

2
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The remainder of the thesis is organized as follows. Chapter 2 introduces a

queueing model with phase-type Markovian arrival process. In Chapter 3, we present

a matrix decomposition approach for the stationary probability in a phase-type

MAP/M/n queueing model by applying the Matrix-Geometric Solution Method

combined with Ramaswami’s formula and LU factorization. We introduce the inter-

departure times in Chapter 4. Numerical results of MAP/M/n queueing systems

with multiple servers are given in Chapter 5, and numerical results of the stationary

distribution are compared with approximation methods and simulations. Conclud-

ing remarks are to be given in Chapter 6.

3
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Chapter 2

Problem Definitions

2.1 Markovian arrival process with phase-type dis-

tributions

We consider a single queueing station and model the queueing network as a semi

MAP/M/n queue shown in Fig. 2.1, where n servers are all identical. The mean

service times of each server is exponentially distributed with rate µ. Let S1 and S1o

represent a transition of service that customer stays with the server and finishes the

service, individually, i.e.,

S1 =
[
−µ

]
, S1o =

[
µ

]
.

The queueing network has two independent and identical arrival streams, where

there are two phases for each arrival stream [4]. For the first arrival stream, the time

spent in the first phase is exponentially distributed with rate λ1, and the time spent

in the second phase is also exponentially distributed with rate λ2. Similarly, for the

other arrival stream, the time spent in the first phase is exponentially distributed

with rate γ1, and the time spent in the second phase is also exponentially distributed

with rate γ2. After the first phase of arrival stream, the incoming arrival goes to

the queueing system (and is to be served) with probability 0 ≤ p ≤ 1; otherwise, it

4
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jumps to the second phase and then departs directly with probability (1 − p). All

arrival streams operate in a similar manner.

Figure 2.1: A semi MAP/M/n queueing model

Hence, customers arrive at the system according to a phase-type process with

mean arrival rate λ > 0, where the mean arrival rate is defined as

λ = p[(
1

λ1

p+ (
1

λ1

+
1

λ2

)(1− p)]−1 + p[(
1

γ1

p+ (
1

γ1

+
1

γ2

)(1− p)]−1.

These two arrival processes are independent to each other, and parameters are

given by (λ1, p, λ2) and (γ1, p, γ2), individually. Namely, arrival processes of this

queueing model are characterized by

T1 =

 −λ1 (1− p)λ1

λ2 −λ2

 , T1o =

 pλ1

0

 ,

T2 =

 −γ1 (1− p)γ1

γ2 −γ2

 , T2o =

 pγ1

0

 .
Note that matrices Tm, for m = 1, 2 correspond to phase transitions, and Tmo

corresponds to the rate as arrivals enter the system. Both arrival processes are MAP

distributed inter-arrival times denoted by (e1,Tm,Tmo), for m = 1, 2, where e1 is a

2× 1 vector with the first element equals to 1 and another element equals to 0.

The advantage of phase-type distributions is their generality and versatility,

which permits the calculation of performance measures of stochastic models with a

high degree of accuracy [3]. The Matrix-Geometric Solution Methods allows us to

5
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deal with the models whose activities are not necessarily exponentially distributed,

while at the same time overcoming the problem of the rapid growth of the state space

introduced by the need to explicitly construct the infinitesimal generator matrix of

the underlying Markovian process.

The one-step transition matrix embedded in the Markov chain of the arrival

process is given by

Φ =


B00 C 0 0 · · ·

0 B00 C 0 · · ·

0 0 B00 C · · ·
...

...
...

...
. . .

 , (2.1)

where there exists nonnegative off-diagonal and negative diagonal elements in the

matrix B00 = [bij], and the elements of matrix C = [cij] are nonnegative. Since Φ

is the infinitesimal generator of the MAP, we have

(B00 + C)1 = 0,

where 1 is an 4 × 1 vector with all its elements equal to 1. Since (B00 + C) is the

infinitesimal generator, there exists a stationary probability vector

θ = (θ1,1,θ1,2,θ2,1,θ2,2),

where θi,j is the stationary probability that an arrival is in the i-th phase of the first

stream and the other arrival is in the j-th phase of the second stream. The repetition

of the state transitions for vector processes implies a geometric form where scalars

are replaced by matrices. Such Markovian processes are called Matrix-Geometric

Solution processes. To determine the stationary probability, we need to solve the

following balance equations

θ(B00 + C) = 0, θ1 = 1.

In the following section, we recall a special phase-type distributions.

6
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2.2 A phase-type queueing model

In general, the embedded Markov chain is ergodic if the stability condition of the

system is ρ = λ/(nµ) < 1.

Lemma 1. Given the mean arrival rate λ > 0 and ρ = λ/(nµ) < 1, the effective

range of p is 0 6 p < w, where

w = min{1, −b−
√
b2 − 4ac

2a
},

a = γ1γ2λ1 + λ1λ2γ1 + nµλ1γ1,

b = −(λ1λ2γ2 + γ1γ2λ1 + λ1λ2γ1 + γ1γ2λ2 + nµλ2γ1 + 2nµλ1γ1 + nµλ1γ2),

and

c = nµ(λ1 + λ2)(γ1 + γ2).

Proof :

Because λ/(nµ) < 1, we have

λ = p[(
1

λ1

p+ (
1

λ1

+
1

λ2

)(1− p)]−1 + p[(
1

γ1

p+ (
1

γ1

+
1

γ2

)(1− p)]−1 < nµ. (2.2)

It implies that

λ1p

λ1 + λ2 − λ1p
+

γ1p

γ1 + γ2 − γ1p
< nµ. (2.3)

By using the form ap2 + bp + c > 0, we can combine the above inequality, and

then solve the inequality.

It gives

p >
−b+

√
b2 − 4ac

2a
,

or

p <
−b−

√
b2 − 4ac

2a
,

where a = γ1γ2λ1 + λ1λ2γ1 + nµλ1γ1,

b = −(λ1λ2γ2 + γ1γ2λ1 + λ1λ2γ1 + γ1γ2λ2 + nµλ2γ1 + 2nµλ1γ1 + nµλ1γ2),

7
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and c = nµ(λ1 + λ2)(γ1 + γ2).

Because the probability p satisfies 0 6 p 6 1, we have 0 6 p < w if

w = min{1, −b−
√
b2 − 4ac

2a
}.

Let A(t) denote the number of customers arriving in (0, t] and J(t) be the state

of the Markov chain at time t with state space {(1, 1), (1, 2), (2, 1), (2, 2)}. Then

{A(t), J(t)} is a three-dimensional Markovian process with state space {(k, i, j) :

k ≥ 0, i, j = 1, 2}, where k is the number of customers in the system, i is the phase

of the first arrival stream, and j is the phase of the second arrival stream.

The state {(k, 1, 1), (k, 1, 2), (k, 2, 1), (k, 2, 2)} is called the level k of the system,

for k > 0. Then, there exists an integer n such that the levels 0 up to n − 1 from

the boundary, and those for k > n are repeating. Transitions between the repeating

states have the property that the rates from (k, i, j) to the state (k + v, i′, j′) for 0

6 v 6 ∞ and i′, j′ = 1, 2 are independent of the value k for k > n. From that n

onwards, the behavior of the system for all k > n is the same as the behavior of the

system for n, where k is the number of queued customers. Such similarity needs not

for (0, 1, · · · , n−1). We define the vector of probabilities that there are k customers

in the system as

πk = lim
t→∞

Pr{A(t) = k, J(t) = (i, j)}

= (πk,1,1 πk,1,2 πk,2,1 πk,2,2), (2.4)

where π can be partitioned into blocks which correspond to state 0, state 1, state

2, etc., e.g., π = (π0,π1,π2, · · · ).

Recall that the Kronecker product of any two matrices L and M is defined as

L⊗M = [lijM] for all i, j,

where lij is the ith row and jth column element of the matrix L.

In addition, the Kronecker sum of any two matrices L and M is given by

L⊕M = L⊗ IM + IL ⊗M.

8
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By applying Kronecker matrix operations, we obtain

B00 = T1 ⊕ T2 =


−λ1 − γ1 (1− p)γ1 (1− p)λ1 0

γ2 −λ1 − γ2 0 (1− p)λ1

λ2 0 −λ2 − γ1 (1− p)γ1

0 λ2 γ2 −λ2 − γ2

 ,

and

C = (T1o ⊗ eT1 )⊕ (T2o ⊗ eT1 ) =


p(λ1 + γ1) 0 0 0

0 pλ1 0 0

0 0 pγ1 0

0 0 0 0

 .

Using the arrival and service process parameters in terms of the Kronecker

product and sum, we obtain sub-matrices A10, A21, A(i)(i−1), A, which represent a

customer is in service, finishes the service, and departs the system, respectively.

A10 = IT ⊗ S1o =


µ 0 0 0

0 µ 0 0

0 0 µ 0

0 0 0 µ

 ,

A21 = IT ⊗ (S1o ⊕ S1o) =


2µ 0 0 0

0 2µ 0 0

0 0 2µ 0

0 0 0 2µ

 ,

A(i)(i−1) = IT ⊗ (S1o ⊕ · · · ⊕ S1o︸ ︷︷ ︸
i

) =


iµ 0 0 0

0 iµ 0 0

0 0 iµ 0

0 0 0 i)µ

 ,
for 3 6 i 6 n− 1 and

A = IT ⊗ (S1o ⊕ · · · ⊕ S1o︸ ︷︷ ︸
n

) =


nµ 0 0 0

0 nµ 0 0

0 0 nµ 0

0 0 0 nµ

 ,

9
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where IT is an identity matrix of dimensions equal to the sum of the dimensions of

the two arrival processes, i.e., IT = I4×4.

Next, we define sub-matrices B00, B11, Bii, and B as follows, where the internal

phase changes for the composite arrival process, which are

B00 = T1 ⊕ T2

=


−λ1 − γ1 (1− p)γ1 (1− p)λ1 0

γ2 −λ1 − γ2 0 (1− p)λ1

λ2 0 −λ2 − γ1 (1− p)γ1

0 λ2 γ2 −λ2 − γ2

 ,

B11 = T1 ⊕ T2 ⊕ S1

=


−λ1 − γ1 − µ (1− p)γ1 (1− p)λ1 0

γ2 −λ1 − γ2 − µ 0 (1− p)λ1

λ2 0 −λ2 − γ1 − µ (1− p)γ1

0 λ2 γ2 −λ2 − γ2 − µ

 ,

Bii = T1 ⊕ T2 ⊕ S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
i

=


−λ1 − γ1 − iµ (1− p)γ1 (1− p)λ1 0

γ2 −λ1 − γ2 − iµ 0 (1− p)λ1

λ2 0 −λ2 − γ1 − iµ (1− p)γ1

0 λ2 γ2 −λ2 − γ2 − iµ

 ,

for 2 6 i 6 n− 1,

B = T1 ⊕ T2 ⊕ S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
n

=


−λ1 − γ1 − nµ (1− p)γ1 (1− p)λ1 0

γ2 −λ1 − γ2 − nµ 0 (1− p)λ1

λ2 0 −λ2 − γ1 − nµ (1− p)γ1

0 λ2 γ2 −λ2 − γ2 − nµ

 ,

10
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and

C = (T1o ⊗ eT1 )⊕ (T2o ⊗ eT1 ) =


p(λ1 + γ1) 0 0 0

0 pλ1 0 0

0 0 pγ1 0

0 0 0 0


representing that a customer goes into the queueing system.

Hence, in our queueing model, there exists the infinitesimal generator matrix

of a continuous time Markovian process with the structure,

Q =



B00 C 0 · · · 0 0 0 · · ·

A10 B11 C
. . . 0 0 0 · · ·

0 A21 B22
. . . 0 0 0 · · ·

...
. . . . . . . . . . . . . . . . . . . . .

0 0 0
. . . B(n−1)(n−1) C 0 · · ·

0 0 0
. . . A B C · · ·

0 0 0
. . . 0 A B · · ·

...
...

...
...

...
. . . . . . . . .



, (2.5)

where n is the number of servers in the system. The matrix Q is composed of

sub-matrices along with the block tridiagonal matrix.

11
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Chapter 3

Matrix-Geometric Solutions

3.1 State balance equations

The stationary probabilities for the queue satisfy πQ = 0, π1 = 1, and π > 0. We

can find the πi’s by solving the following state balance equations (3.1)-(3.5):

π0B00 + π1A10 = 0, (3.1)

π0C + π1B11 + π2A21 = 0, (3.2)

π1C + π2B22 + π3A32 = 0, (3.3)

...

πn−2C + πn−1B(n−1)(n−1) + πnA(n)(n−1) = 0. (3.4)

The equation for the repeating states of the process is given by:

πi−1C + πiB + πi+1A = 0, i = n, n+ 1, n+ 2, · · · . (3.5)

Using (3.5), the matrix geometric procedure gives the vector solution πn+k−1 =

πn−1R
k, for k = 0, 1, 2, · · · , where R is the matrix solution of the equation C +

12
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RB + R2A = 0. Neuts [8] showed that the iteration

Rk+1 = −(C + R2
kA)B−1

converges to the solution R starting with R0 = 0.

We rewrite the above equations (3.1)-(3.5) in matrix form as follows[
π0 π1 · · · πn−1 πn

]
·Q1 = 0, (3.6)

where

Q1 =



B00 C 0 0 · · · 0 0

A10 B11 C 0 · · · 0 0

0 A21 B22 C · · · 0 0
...

. . . . . . . . . . . . . . . . . .

0 0 0 · · · A(n−1)(n−2) B(n−1)(n−1) C

0 0 0 · · · · · · A B + RA


.

In addition, by using the normalization condition, we obtain

π0 · 1 + π1 · 1 + · · ·+ πn(I−R)−1 · 1 = 1. (3.7)

Then the solution for the probabilities π0,π1...,πn can be determined by[
π0 π1 · · · πn−1 πn

]
·Q2 = [1,0], (3.8)

where

Q2 =



1 B00 C 0 · · · 0 0

1 A10 B11 C · · · 0 0

1 0 A21 B22
. . . 0 0

...
. . . . . . . . . . . . . . . . . .

1 0 0 · · · A(n−1)(n−2) B(n−1)(n−1) C

(I−R)−1 · 1 0 0 · · · · · · A B + RA


.

By the stability assumption, the infinitesimal generator matrix is irreducible.

The necessary condition for this is that matrices B and Bii, for i = 0, 1, 2, · · · , n−1,

13
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are nonsingular, which implies that inverses of those matrices can be determined.

The computation of the matrix R is by means of the iterative procedure [5].

The sequence {Rk}k is entry-wise nondecreasing and converges monotonically

to a nonnegative matrix R. This follows the fact that B−1 is a nonnegative matrix.

The number of iterations needed for convergence increases as the spectral radius of

R increases. We terminate the iteration and return with the solution of R when

‖Rk+1 −Rk‖∞ 6 ε,

where ε is a given small constants.

3.2 An algorithm for matrix decomposition

Ramaswami’s formula [7]

Consider computing π such that πQ = 0. That is,

[
π∗ πn+1 πn+2 · · ·

]


B0 B1 0 0 · · ·

B−1 B C 0 · · ·

0 A B C · · ·
. . . . . . . . . . . . . . .

 = 0,

where π∗ = [π0,π1, ...,πn],

B0 =



B00 C 0 · · · 0 0

A10 B11 C
. . . 0 0

0 A21 B22
. . . 0 0

...
. . . . . . . . . . . . . . .

0 0 · · · A(n−1)(n−2) B(n−1)(n−1) C

0 0 · · · · · · A B


,

B−1 =
[

0 · · · 0 A
]

4×4(n+1)
,

14
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B1 =


0
...

0

C


4(n+1)×4

.

It also gives 
B C 0 · · ·

A B C · · ·

0 A B · · ·
. . . . . . . . . . . .

 = VW,

where

V =


V0 V1 0 · · ·

0 V0 V1 · · ·

0 0 V0 · · ·
. . . . . . . . . . . .

 ,W =


I 0 0 · · ·

−H I 0 · · ·

0 −H I · · ·
. . . . . . . . . . . .

 .

Then we have

[
π∗ πn+1 πn+2 · · ·

]


B0 B1 0 · · ·

B−1

0 VW
...

 = 0,

which is equivalent to

[
π∗ πn+1 πn+2 · · ·

]


B0 B∗1 0 · · ·

B−1

0 V
...

 = 0.

As we know

W−1 =


I 0 0 · · ·

H I 0 · · ·

0 H I · · ·
. . . . . . . . . . . .

 , and
[

B∗1 0 0 · · ·
]

=
[

B1 0 0 · · ·
]

W−1.
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Then, we have B∗1 = B1 · I.

Next, to determine H and V0, we solve the following equations:

V0 −V1H = B,

V1 = C,

and

−V0H = A.

From the first two equations, it yields

[
π∗ πn+1

]  B0 B1

B−1 V0

 = 0.

Then, by solving the following equations

π∗(B0 −B1V
−1
0 B−1) = 0 (3.9)

and

π0 · 1 + π1 · 1 + · · ·+ πn(I−R)−1 · 1 = 1,

we get π∗ = [π0,π1, ...,πn].

LU factorization

Considering the matrix Q1. Here, we assume that π∗Q1 = 0. The equations are

of the homogeneous system. We use LU factorization to obtain π∗ in the following

steps.

Step 1: Let the first column of Q1 be replaced by the column vector

(1, · · · ,1, (I−R)−1 · 1)T .

16
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Then, the modified Q1 is rewritten as a new matrix Q3, and we have

π∗Q3 =
[

y 0 · · · 0
]
,

where

y =
[

1 0 0 0
]
.

Step 2: If we transpose π∗Q3, it gives

(π∗Q3)
T = QT

3 π∗T =


yT

0
...

0

 .

Then, we have

BT
00
∗

A10
∗ Ω Ω · · · Ω Ω

C B11
T A21 0 · · · 0 0

0 C BT
22 A32 · · · 0 0

...
. . . . . . . . . . . . . . . . . .

0 0 0 · · · C BT
(n−1)(n−1) A

0 0 0 · · · · · · C (B + RA)T


·



π0

π1

π2

...

πn−1

πn


=



yT

0

0
...

0

0


,

where

BT
00

∗
=


1 1 1 1

(1− p)γ1 −λ1 − γ2 0 λ2

(1− p)λ1 0 −λ2 − γ1 γ2

0 (1− p)λ1 (1− p)γ1 −λ2 − γ2

 ,

A10
∗ =


1 1 1 1

0 µ 0 0

0 0 µ 0

0 0 0 µ

 ,Ω =


1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,Ω =


(I−R)−1 · 1

0

0

0

 .

Step 3: Applying Gaussian elimination, we transform Ω and Ω into a zero

matrix.
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Then it gives

Zn =



BT
00
∗∗

A10
∗∗ 0 0 · · · 0 0

C BT
11 A21 0 · · · 0 0

0 C BT
22 A32 · · · 0 0

...
. . . . . . . . . . . . . . . . . .

0 0 0 · · · C BT
(n−1)(n−1) A

0 0 0 · · · · · · C (B + RA)T


,

where BT
00
∗∗
, A10

∗∗, are obtained by Gaussian elimination.

Theorem 1. Zn is a nonsingular matrix.

Proof : By Step 1, we know

π∗Q3 =
[

y 0 · · · 0
]
,

where

y =
[

1 0 0 0
]
.

The solution of π∗ is unique by Matrix Geometric Solution, and Q3 is a non-

sigular matrix. We transpose the matrix Q3 to QT
3 . By Step 3, we determine Zn.

Q3 is a nonsigular matrix, so is Zn.

Theorem 2. (Roger and Charles [9]) Let Z ∈ Mm×m, a set of m × m matrices.

There exists permutation matrices D, E ∈ Mm×m, a lower triangular matrix L ∈

Mm×m, and an upper triangular matrix U ∈Mm×m such that

Z = DLUE.

If Z is nonsingular, one may take E = I and Z may be written as

Z = DLU.

Proof :
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If rank Z=k, Z has a k-by-k nonsingular submatrix, which may, by permutation

of rows and columns, be permuted into the upper left corner. Now apply Theorem

D in Appendix B to the upper left corner and apply Theorem LU in Appendix A to

achieve a factorization. If Z is nonsingular, Theorem D in Appendix B indicates that

permutation on the right is unnecessary in order to apply Theorem D in Appendix

B, which verifies the second factorization and completes the proof.

Step 4:

By

Zn · π∗T =



yT

0

0
...

0

0


,

and according to above Theorems 1 and 2, we can infer that as follows Remark 1

and Remark 2. Let Zn({i}), i = 1, · · · , 4(n + 1) be formed with the first i rows

squared matrix of Zn. Zn({1, 2, · · · , i}) denote a series of matrices Zn({1}), Zn({2}),

· · · , Zn({i}).

Remark 1. Zn is a 4(n+ 1)× 4(n+ 1) matrix and nonsingular, and

det(Zn)({1, · · · , j}) 6= 0, ∀ j = 1, · · · , 4(n+ 1),

which implies Zn = LU [9].

Because Zn = LU, we can slove [π0,π1, ...,πn] by

LU · π∗T =



yT

0

0
...

0

0


.
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It gives the LU factorization of Zn as follows:

I 0 0 0 · · · 0 0

L1 I 0 0 · · · 0 0

0 L2 I 0 · · · 0 0
...

. . . . . . . . . . . . . . . . . .

0 0 0 · · · Ln−1 I 0

0 0 0 · · · · · · Ln I


·



U0 F1 0 0 · · · 0 0

0 U1 F2 0 · · · 0 0

0 0 U2 F3 · · · 0 0
...

. . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 Un−1 Fn

0 0 0 · · · · · · 0 Un


.

The following algorithm is given for Li and Ui:

Algorithm 1: LU factorization

Input U0 = BT
00
∗∗

for i = 1 : n

do Li = CU−1
i−1

do Ui = BT
ii
∗ − LiFi

end

After completing the LU factorization, the vector π can be obtained via block

forward and backward substitution:

Algorithm 2: Forward and backward substitution

Input y0 = [1, 0, 0, 0]T

for i = 1 : n

do yi = −Liyi−1

end

do πn = U−1
n yn
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for i = n− 1 : −1 : 0

do πi = U−1
i (yi − Fi+1πi+1)

end

According the above algorithm, we obtain the stationary probability π∗ =

[π0,π1, ...,πn].

Remark 2. If Zn is a 4(n + 1) × 4(n + 1) matrix and singular with some 1 ≤ j ≤

4(n+ 1) such that

det(Zn)({j}) = 0,

then by Theorem 2 there exists a permutation matrix D ∈ M4(n+1)×4(n+1) matrix

such that

det(DTZn)({1, · · · , j}) 6= 0, j = 1, · · · , 4(n+ 1)

which implies DTZn = LU and Zn = DLU.

Because Zn = DLU, we can slove π∗ by

DLU · π∗T =



yT

0

0
...

0

0


⇒ LU · π∗T = DT ·



yT

0

0
...

0

0


.

After completing the LU factorization, the vector π can be obtained via block

forward and backward substitution:

Algorithm 1: Forward and backward substitution

Input y0 = [DT ({4})][1, 0, 0, 0]T

for i = 1 : n

do yi = −Liyi−1
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end

do πn = U−1
n yn

for i = n− 1 : −1 : 0

do πi = U−1
i (yi − Fi+1πi+1)

end

In the above Algorithm, DT ({4}) is the first four rows and columns composing

a 4× 4 matrix.

According to the above algorithm, we obtain the stationary probability π∗ =

[π0,π1, ...,πn].
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Chapter 4

Inter-Departure times

4.1 Departure process

Characterizing the departure process involves developing an infinitesimal generator

for the inter-departure times. The elements needed in this development are the

departure-point stationary probabilities d = (d0,d1,d2, · · · ). They are related to

the continuous time stationary probabilities π = (π0,π1,π2, · · · ) by the following

relationships. Here, we denote the total arrival average rate by λ due to superposi-

tion of the two arrival streams, and

λ = p[(
1

λ1

p+ (
1

λ1

+
1

λ2

)(1− p)]−1 + p[(
1

γ1

p+ (
1

γ1

+
1

γ2

)(1− p)]−1.

d0 = π1A10/λ, (4.1)

d1 = π2A21/λ, (4.2)

d2 = π3A32/λ, (4.3)

di−1 = πiAi(i−1)/λ, for i = 3, 4, · · · , n. (4.4)

The departure process has three different partitions:

First, when there is no customer in the system, a departure has to wait until

at least one customer has occurred followed by a service.
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Second, when there is at least 1 and at most (n− 1) customers in the system,

the inter-departure time can be a function of single processing customer’s remaining

service or it could evolve from a customer arrived and its completion of service.

Third, when a departing customer leaves the system with at least n remaining

customers, the minimum of the remaining service time of one of these customers or

a complete service time of another customer becomes the inter-departure time.

We find that when there remain at least n customers in the system, the inter-

departure time characteristics are the same for all these cases. The infinitesimal

generator matrix for the departure process Gn1 is given by

Gn1 =

0 1 2 · · · n− 1 n+

0 B00 C 0 · · · 0 0

1 0 B11 C · · · 0 0

2 0 0 B22 · · · 0 0
...

...
...

...
. . .

...
...

n− 1 0 0 0
. . . B(n−1)(n−1) Ĉ

n+ 0 0 0
. . . 0 SSin

,

where only two of these sub-matrices are given by

SSin = S1 ⊕ · · · ⊕ S1,

Ĉ = C · 1.

The probabilities of the departure-process system starting in the various states

d = (d0,d1, · · · , dn+) are made up of the departure point probabilities, with

dn+ = (
∞∑

a=n+1

πaA/λ)1.

This series can be written in closed form as

dn+ = (
∞∑

a=n+1

πnR
a−nA/λ)1

= πn[(I−R)−1 − I]A/λ)1.
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4.2 Moments of inter-departure times

The stationary inter-departure time is of the phase type distribution characterized

by [d,Gn1]. Thus, from Neuts [8], the moments of inter-departure times random

variable X are given below

E[Xk] = k!(−1)kd(Gn1)
−k1, k = 1, 2, . . . ,

V ar[X] = E[X2]− (E[X])2.

4.3 Lagk correlations between successive depar-

tures

The stationary probabilities of the states of the arrival process, θ, are obtained from

its Markovian arrival process representation. We define

Ân(n−1) = θ ⊗ (S1o ⊕ · · · ⊕ S1o).

To get the lagk correlations of the output inter-departure times, it is necessary

to develop the generator matrix Ĝn segmented into two matrices: the internal tran-

sitions(without departures) Gn1 and the matrix containing the departure transition

Gn2 such that Ĝn = Gn1 + Gn2.

The matrix Gn2 is characterized as

Gn2 =

0 1 2 · · · n− 1 n+

0 0 0 0 · · · 0 0

1 A10 0 0 · · · 0 0

2 0 A21 0 · · · 0 0
...

...
...

...
. . .

...
...

n− 1 0 0 0
. . . 0 0

n+ 0 0 0
. . . (1− t)Ân(n−1) tSSout

,
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where t is the probability that departure leaves the system with at least n customers

remaining. Define t and SSout as

t =

∑∞
a=n+1 πa1

πn1 +
∑∞

a=n+1 πa1
=

dn+

dn−11 + dn+

,

SSout = S1o ⊕ · · · ⊕ S1o.

Given the Gn1 and Gn2 matrices, from Bodrog, Horvath, Telek [2], and Telek,

Horvath [11], the lagk correlation is computed by

lagk =
(λ)2d(−Gn1)

−1((−Gn1)
−1Gn2)

k(−Gn1)
−11− 1

2(λ)2d(−Gn1)−21− 1)
.

26



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Chapter 5

Numerical Examples

5.1 Queueing models with two servers

In this Chapter we present four sets of numerical examples to demonstrate the

matrix decomposition approach for stationary probabilities of phase-type queueing

models with multiple servers.

M/M/2 queueing models

Consider a classic model of multiple servers for a further comparison and validate our

model. Without loss of the Poisson assumption, we consider an arrival stream com-

bined by two independent Poisson processes. Here, we present a numerical example

of M/M/2 queueing model. The parameters of two arrival processes (λ1, p, λ2) and

(γ1, p, γ2) are given as (λ1, p, λ2) = (10, 1, 10), (γ1, p, γ2) = (5, 1, 20), µ = 10.

By applying the MA, RA, and LU methods, we take π̄0 π̄1 · · · π̄12 π̄13 to

compare the values. We find that they are the same.
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π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

MA 0.1429 0.2143 0.1607 0.1205 0.0904 0.0678 0.0508

RA 0.1429 0.2143 0.1607 0.1205 0.0904 0.0678 0.0508

LU 0.1429 0.2143 0.1607 0.1205 0.0904 0.0678 0.0508

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

MA 0.0381 0.0286 0.0214 0.0160 0.0121 0.0090 0.0068

RA 0.0381 0.0286 0.0214 0.0160 0.0121 0.0090 0.0068

LU 0.0381 0.0286 0.0214 0.0160 0.0121 0.0090 0.0068

Then we take the example as an M/M/2 queueing model. We find the proba-

bility of idle system is 0.142857. The value is the same as π̄0.

In M/M/2 queues, we find that the busy rate of the queueing is (λ1+γ1)/(2µ) =

15/20 = 0.75. We estimate the values by using 1− π̄0 − 1
2
π̄1. The busy rate of the

queueing is 1−0.1429− 1
2
×0.2143 = 0.74995 + 0.75. All results are consistent with

the standards of the classic model.

The stationary probabilities of the states of the

arrival process

Then, we consider the system with two servers, where parameters of arrival processes

are given by (λ1, p, λ2) = (10, 0.4, 10), (γ1, p, γ2) = (20, 0.4, 5), and let µ = 10.

The stationary probabilities of the states of the arrival process, θ, are obtained

from its Markovian arrival process representation.

By solving the following equations θ(B00 + C) = 0 and θ1 = 1 with Matlab

[13], we have

θ = (0.1838, 0.4412, 0.1103, 0.2647).

For comparison of estimated values θ, we also use a simulation programming

of queueing models, Promodel [14]. From the stationary probabilities obtained by

simulation with Promodel, the results are shown in Table 5.1.
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We have the values θ = ( 0.1860, 0.4340, 0.1110, 0.2590). We can find that the

value is close to

π0 + π1 + π2 + π3 + . . . = π0 + π1 + π2(I−R)−1 = (0.1838, 0.4412, 0.1103, 0.2647).

Table 5.1: Arrival processes of two phases simulated in Promodel.

arrival phase 1 phase 2 phase 1 phase 2

in stream 1 in stream 1 in stream 2 in stream 2

average content 0.62 0.37 0.30 0.70

state (k, 1, 1) (k, 1, 2) (k, 2, 1) (k, 2, 2)

stationary probability 0.1860 0.4340 0.1110 0.2590

The matrix geometric solution procedure

By the matrix geometric solution procedure of the vector solution, we use πQ = 0,

π1 = 1, and π > 0 to determine π. It gives

π0 = (0.0873, 0.2798, 0.0612, 0.1962),

π1 = (0.0608, 0.1187, 0.0332, 0.0529),

and

π2 = (0.0230, 0.0295, 0.0105, 0.0106),

which are consistent with the numerical results of simulation in Promodel.

Ramaswami’s formula

With RA method [7], we have

π0 = (0.0874, 0.2798, 0.0613, 0.1962),

π1 = (0.0608, 0.1186, 0.0333, 0.0528),

29



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

and

π2 = (0.0229, 0.0293, 0.0105, 0.0104),

which will be compared with simulation, LU approach in the next section.

LU factorization

Next, by applying the algorithm of LU factorization, it gives

π0 = (0.0873, 0.2798, 0.0612, 0.1962),

π1 = (0.0608, 0.1187, 0.0332, 0.0529),

and

π2 = (0.0230, 0.0295, 0.0105, 0.0106),

Numerical experiments by changing p

Here, we observe the numerical results of changing values of p, and other variables

are fixed. That is, it gives (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5), µ = 10,

and 0 6 p < 0.8840, where p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

The numerical results are compared in three different approaches, MA repre-

sents the matrix geometric solution procedure, RA represents Ramaswami’s for-

mula, and LU represents LU factorization. Let π̄i be the probability of i customers

in system, i.e., π̄i = πi1. Table 5.2 and Table 5.3 shows the comparison of numerical

results.

Promodel

In order to estimate the π0, π1 and π2 accurately. By simulation in Promodel

[14], it gives the queue empty rates which are shown in Table 5.4. Here, the
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Table 5.2: Probabilities obtained from three methods with p = 0.1, 0.2, 0.3.

p 0.1 0.2 0.3

MA RA LU MA RA LU MA RA LU

0.0976 0.0976 0.0976 0.0949 0.0949 0.0949 0.0916 0.0916 0.0916

π0 0.3732 0.3732 0.3732 0.3448 0.3448 0.3448 0.3139 0.3140 0.3139

0.0910 0.0910 0.0910 0.0816 0.0816 0.0816 0.0717 0.0717 0.0717

0.3477 0.3477 0.3477 0.2963 0.2963 0.2963 0.2458 0.2458 0.2458

π̄0 0.9095 0.9095 0.9095 0.8176 0.8176 0.8176 0.7230 0.7231 0.7230

0.0153 0.0153 0.0153 0.0308 0.0308 0.0308 0.0461 0.0461 0.0461

π1 0.0364 0.0364 0.0364 0.0690 0.0690 0.0690 0.0969 0.0969 0.0969

0.0111 0.0111 0.0111 0.0206 0.0206 0.0206 0.0281 0.0281 0.0281

0.0219 0.0219 0.0219 0.0381 0.0381 0.0381 0.0485 0.0485 0.0485

π̄1 0.0847 0.0847 0.0847 0.1585 0.1585 0.1585 0.2196 0.2196 0.2196

0.0013 0.0013 0.0013 0.0055 0.0055 0.0055 0.0127 0.0127 0.0127

π2 0.0021 0.0021 0.0021 0.0081 0.0081 0.0081 0.0176 0.0175 0.0176

0.0008 0.0008 0.0008 0.0031 0.0031 0.0031 0.0065 0.0065 0.0065

0.0010 0.0010 0.0010 0.0036 0.0036 0.0036 0.0070 0.0070 0.0070

π̄2 0.0052 0.0052 0.0052 0.0203 0.0203 0.0203 0.0438 0.0437 0.0437

queue empty rate is referred to the probability of no customer in the queue. We

find that the sum
∑2

k=0 π̄k is equal to the queue empty rate obtained with sim-

ulations, where (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5), 0 6 p < 0.8840,

p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and µ = 10. The comparison results are shown in Table

5.4 .

According to Table 5.2 and Table 5.3, we find that if the value of p is smaller,

the πi value of three methods are very close. But when the value of p is closed to

its upper bound, the πi’s are a little different.
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Table 5.3: Probabilities obtained from three methods with p = 0.4, 0.5, 0.6.

p 0.4 0.5 0.6

MA RA LU MA RA LU MA RA LU

0.0873 0.0874 0.0873 0.0815 0.0817 0.0815 0.0730 0.0727 0.0730

π0 0.2798 0.2798 0.2798 0.2410 0.2410 0.2410 0.1956 0.1948 0.1956

0.0612 0.0613 0.0612 0.0500 0.0502 0.0500 0.0379 0.0377 0.0379

0.1962 0.1962 0.1962 0.1478 0.1480 0.1478 0.1014 0.1010 0.1014

π̄0 0.6245 0.6247 0.6245 0.5203 0.5209 0.5203 0.4079 0.4062 0.4079

0.0608 0.0608 0.0608 0.0739 0.0740 0.0739 0.0832 0.0834 0.0832

π1 0.1187 0.1186 0.1187 0.1321 0.1317 0.1321 0.1336 0.1323 0.1336

0.0332 0.0333 0.0332 0.0354 0.0355 0.0354 0.0338 0.0340 0.0338

0.0529 0.0528 0.0529 0.0512 0.0510 0.0512 0.0436 0.0431 0.0436

π̄1 0.2656 0.2655 0.2656 0.2926 0.2922 0.2926 0.2942 0.2938 0.2942

0.0230 0.0229 0.0230 0.0360 0.0360 0.0360 0.0505 0.0504 0.0505

π2 0.0295 0.0293 0.0295 0.0423 0.0417 0.0423 0.0533 0.0515 0.0533

0.0105 0.0105 0.0105 0.0145 0.0145 0.0145 0.0173 0.0162 0.0173

0.0106 0.0104 0.0106 0.0133 0.0129 0.0133 0.0142 0.0135 0.0142

π̄2 0.0736 0.0731 0.0736 0.1061 0.1051 0.1061 0.1353 0.1326 0.1353

Table 5.4: Comparison of queue empty rates of two servers.

p 0.1 0.2 0.3 0.4 0.5 0.6

π0+π1+π2 0.9996 0.9963 0.9863 0.9637 0.9192 0.8373

(Matrix geometric method)

Queue empty rate 0.9996 0.9964 0.9877 0.9675 0.9139 0.8448

(Promodel 20 hours)
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Inter-departure times

The departure process has three different partitions:

First, when there is no customer in the system, a departure has to wait until

at least one customer has occurred followed by a service.

Second, when there is one customer in the system, the inter-departure time can

be a function of single processing customer ’s remaining service or it could evolve

from a customer arrived and its completion of service.

Third, when a departing customer leaves the system with at least two remaining

customers, the minimum of the remaining service time of one of these customers or

complete service time of another customer becomes the inter-departure time.

Now, we begin by describing the two arrival processes (λ1, p, λ2) = (10, 0.4, 10),

(γ1, p, γ2) = (20, 0.4, 5), and let µ = 10.

Then, we find that when there remain at least two customers in the system,

the inter-departure time characteristics are the same for all these cases (k ≥ 2).

The infinitesimal generator matrix for the departure process G21 has three different

segmentations given by

G21 =

0 1 2+

0 B00 C 0

1 0 B11 Ĉ

2+ 0 0 SSin

,

where

Ĉ = C · 1 =


12

4

8

0

 ,

SSin = S1 ⊕ S1 =
[
−20

]
.
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Thus, we have

G21 =



−30 12 6 0 12 0 0 0 0

5 −15 0 6 0 4 0 0 0

10 0 −30 12 0 0 8 0 0

0 10 5 −15 0 0 0 0 0

0 0 0 0 −40 12 6 0 12

0 0 0 0 5 −25 0 6 4

0 0 0 0 10 0 −40 12 8

0 0 0 0 0 10 5 −25 0

0 0 0 0 0 0 0 0 −20



.

The probabilities of the departure-process system starting in the various states

d = (d0,d1, d2+) are made up of the departure point probabilites, with

d0 = π1A10/λ,

d1 = π2A21/λ,

d2+ = (
∞∑
n=3

πnA/λ)1.

This series can be written in closed form as

d2+ = (
∞∑
n=3

π2R
n−2A/λ)1,

= π2[(I−R)−1 − I]A/λ)1.

By above equations. We can compute d :

d0 = (0.1253, 0.2446, 0.0685, 0.1090),

d1 = (0.0946, 0.1215, 0.0434, 0.0436),

d2+ = 0.1495.
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Moments of inter-departure times

The stationary inter-departure time is of the phase type distribution characterized

by [d,G21]. Thus, from Neuts [8] we know that the moments of inter-departure

times random variable X are given by

E[X] = (−1)d(G21)
−11.

Then we use different p to compute E[X] by Matlab and Promodel :

p 0.1 0.2 0.3 0.4 0.5 0.6

E[X] Matlab 1.0405 0.4846 0.2991 0.2061 0.1500 0.1123

E[X] Promodel 1.00 0.49 0.30 0.21 0.15 0.11

and we use the same parameters to compute V ar[X] by Matlab and Promodel,

V ar[X] = E[X2]− E[X]2.

p 0.1 0.2 0.3 0.4 0.5 0.6

V ar[X] Matlab 1.1703 0.2711 0.1091 0.0541 0.0295 0.0167

V ar[X] Promodel 1.1484 0.2796 0.1339 0.0559 0.0344 0.0156

Lagk correlations between successive departures

To get the lagk correlations of the output inter-departure times, it is necessary to

develop the infinitesimal generator matrix Ĝ2 segmented into two matrices: the in-

ternal transitions (without departures) G21 and the matrix containing the departure

transition G22 such that Ĝ2 = G21 + G22.

The matrix G22 is characterized as

G22 =

0 1 2+

0 0 0 0

1 A10 0 0

2+ 0 (1− t)Â21 tSSout

,
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where t is the probability that departure leaves the system with at least two cus-

tomers remaining and (1− t) is the probability that only one customer remains.

We define t as

t =

∑∞
a=3 πa1

π21 +
∑∞

a=3 πa1
=

d2+

d1 + d2+

=
d2+

1− d01
= 0.3303.

Two of sub-matrices in G22 are given by

Â21 = θ ⊗ (S1o ⊕ S1o) = [0.1838, 0.4412, 0.1103, 0.2647]⊗ [20],

SSout = S1o ⊕ S1o = [20].

Thus, we have

G22 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0

0 0 10 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0

0 0 0 0 2.4620 5.9088 1.4772 3.5453 6.6066



.

Given G21 and G22 matrices, from Bodrog, Horvath, Telek [2], and Telek, Hor-

vath [11], we have that the lagk correlation is computed by

lagk =
(λ)2d(−G21)

−1((−G21)
−1G22)

k(−G21)
−11− 1

2(λ)2d(−G21)−21− 1)
,

where λ = (p[( 1
λ1
p + ( 1

λ1
+ 1

λ2
)(1− p)]−1 + p[( 1

γ1
p + ( 1

γ1
+ 1

γ2
)(1− p)]−1 = 4.8529) is

the average effective arrival rate. We can compute lagk (k = 1, 2, 3, 4),

lag1 = 0.0342, lag2 = 0.0224, lag3 = 0.0206, lag4 = 0.0203.
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5.2 Queueing models with three servers

M/M/3 queueing models

Once more, we present a numerical example of M/M/3 queues to verify our model.

Here, two arrival processes (λ1, p, λ2) and (γ1, p, γ2) are given with (λ1, p, λ2) =

(10, 1, 10), (γ1, p, γ2) = (5, 1, 20), and µ = 10.

By applying the MA, RA, and LU methods, we take π̄0 π̄1 · · · π̄12 π̄13 to

compare the values. We find that they are the same.

π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

MA 0.2105 0.3158 0.2368 0.1184 0.0592 0.0296 0.0148

RA 0.2105 0.3158 0.2368 0.1184 0.0592 0.0296 0.0148

LU 0.2105 0.3158 0.2368 0.1184 0.0592 0.0296 0.0148

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

MA 0.0074 0.0037 0.0018 0.0009 0.0005 0.0002 0.0001

RA 0.0074 0.0037 0.0018 0.0009 0.0005 0.0002 0.0001

LU 0.0074 0.0037 0.0018 0.0009 0.0005 0.0002 0.0001

In this example, we find the probability of idle system is 0.210526, which is

the same as π̄0. In M/M/3 queues, we know that the busy rate of the queueing is

(λ1 + γ1)/(3µ) = 15/30 = 0.5. By using 1 − π̄0 − 2
3
π̄1 − 1

3
π̄2, it gives the busy rate

of queues as follows

1− 0.2105− 1

3
× 0.3158− 2

3
× 0.2368 + 0.5263 + 0.5.

The matrix geometric solution procedure

Here, we present numerical results of queueing systems with three servers, where two

arrival processes are given with (λ1, p, λ2) = (10, 0.4, 10), (γ1, p, γ2) = (20, 0.4, 5),

and let µ = 10.
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From the matrix geometric solution procedure, we solve πQ = 0, π1 = 1, and

π > 0 to estimate π. Then, it gives the vector solution

π0 = (0.0887, 0.2838, 0.0622, 0.1988),

π1 = (0.0621, 0.1204, 0.0339, 0.0534),

π2 = (0.0240, 0.0297, 0.0109, 0.0103),

and

π3 = (0.0066, 0.0056, 0.0026, 0.0017).

Ramaswami’s formula

By applying RA method, we have

π0 = (0.0887, 0.2838, 0.0622, 0.1988),

π1 = (0.0621, 0.1204, 0.0339, 0.0534),

π2 = (0.0240, 0.0297, 0.0109, 0.0103),

and

π3 = (0.0066, 0.0056, 0.0026, 0.0017).

LU factorization

By using LU factorization given in previous section, we obtain

π0 = (0.0887, 0.2838, 0.0622, 0.1988),

π1 = (0.0621, 0.1204, 0.0339, 0.0534),

π2 = (0.0240, 0.0297, 0.0109, 0.0103),

and

π3 = (0.0066, 0.0056, 0.0026, 0.0017).
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Numerical experiments by changing p

We observe the effect of changing p on the numerical results obtained from three

methods. Here, we have (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5), µ = 10, and

0 6 p < w = 1, for p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Tables 5.5-5.7 show the

comparison of numerical results.

Table 5.5: Probabilities obtained from three methods with p = 0.2, 0.3, 0.4.

p 0.2 0.3 0.4

MA RA LU MA RA LU MA RA LU

0.0950 0.0950 0.0950 0.0921 0.0921 0.0921 0.0887 0.0887 0.0887

π0 0.3452 0.3452 0.3452 0.3155 0.3155 0.3155 0.2838 0.2838 0.2838

0.0817 0.0817 0.0817 0.0721 0.0721 0.0721 0.0622 0.0622 0.0622

0.2967 0.2967 0.2967 0.2469 0.2470 0.2469 0.1988 0.1988 0.1988

π̄0 0.8186 0.8186 0.8186 0.7266 0.7267 0.7266 0.6335 0.6335 0.6335

0.0308 0.0308 0.0308 0.0465 0.0465 0.0465 0.0621 0.0621 0.0621

π1 0.0691 0.0691 0.0691 0.0974 0.0974 0.0974 0.1204 0.1204 0.1204

0.0207 0.0207 0.0207 0.0283 0.0283 0.0283 0.0339 0.0339 0.0339

0.0381 0.0381 0.0381 0.0486 0.0486 0.0486 0.0534 0.0534 0.0534

π̄1 0.1587 0.1587 0.1587 0.2208 0.2208 0.2208 0.2698 0.2698 0.2698

0.0056 0.0056 0.0056 0.0130 0.0130 0.0130 0.0240 0.0240 0.0240

π2 0.0081 0.0081 0.0081 0.0176 0.0176 0.0176 0.0297 0.0297 0.0297

0.0031 0.0031 0.0031 0.0066 0.0066 0.0066 0.0109 0.0109 0.0109

0.0035 0.0035 0.0035 0.0069 0.0068 0.0069 0.0103 0.0103 0.0103

π̄2 0.0203 0.0203 0.0203 0.0441 0.0440 0.0441 0.0749 0.0749 0.0749

0.0007 0.0007 0.0007 0.0026 0.0026 0.0026 0.0066 0.0065 0.0066

π3 0.0007 0.0007 0.0007 0.0024 0.0024 0.0024 0.0056 0.0056 0.0056

0.0003 0.0003 0.0003 0.0011 0.0011 0.0011 0.0026 0.0026 0.0026

0.0003 0.0003 0.0003 0.0008 0.0008 0.0008 0.0017 0.0017 0.0017

π̄3 0.0020 0.0020 0.0020 0.0069 0.0069 0.0069 0.0165 0.0164 0.0165
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Table 5.6: Probabilities obtained from three methods with p = 0.5, 0.6, 0.7.

p 0.5 0.6 0.7

MA RA LU MA RA LU MA RA LU

0.0847 0.0847 0.0847 0.0796 0.0797 0.0796 0.0728 0.0730 0.0728

π0 0.2493 0.2493 0.2493 0.2112 0.2113 0.2112 0.1679 0.1681 0.1679

0.0519 0.0519 0.0519 0.0411 0.0412 0.0411 0.0299 0.0302 0.0299

0.1527 0.1527 0.1527 0.1091 0.1092 0.1091 0.0690 0.0693 0.0690

π̄0 0.5386 0.5386 0.5386 0.4410 0.4414 0.4410 0.3396 0.3406 0.3396

0.0775 0.0776 0.0775 0.0921 0.0922 0.0921 0.1044 0.1046 0.1044

π1 0.1366 0.1366 0.1366 0.1440 0.1438 0.1440 0.1392 0.1387 0.1392

0.0369 0.0369 0.0369 0.0370 0.0371 0.0370 0.0335 0.0337 0.0335

0.0525 0.0525 0.0525 0.0462 0.0462 0.0462 0.0352 0.0351 0.0352

π̄1 0.3035 0.3036 0.3035 0.3193 0.3193 0.3193 0.3123 0.3121 0.3123

0.0390 0.0390 0.0390 0.0581 0.0581 0.0581 0.0809 0.0809 0.0809

π2 0.0434 0.0433 0.0434 0.0567 0.0564 0.0567 0.0663 0.0655 0.0663

0.0154 0.0154 0.0154 0.0194 0.0194 0.0194 0.0215 0.0216 0.0215

0.0130 0.0130 0.0130 0.0142 0.0141 0.0142 0.0131 0.0129 0.0131

π̄2 0.1108 0.1107 0.1108 0.1484 0.1480 0.1484 0.1818 0.1809 0.1818

0.0138 0.0138 0.0138 0.0256 0.0256 0.0256 0.0435 0.0434 0.0435

π3 0.0106 0.0105 0.0106 0.0171 0.0168 0.0171 0.0243 0.0235 0.0243

0.0047 0.0047 0.0047 0.0074 0.0074 0.0074 0.0100 0.0100 0.0100

0.0028 0.0027 0.0028 0.0038 0.0037 0.0038 0.0043 0.0041 0.0043

π̄3 0.0319 0.0317 0.0319 0.0539 0.0535 0.0539 0.0821 0.0810 0.0821
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Table 5.7: Probabilities obtained from three methods with p = 0.8, 0.9.

p 0.8 0.9

MA RA LU MA RA LU

0.0625 0.0631 0.0625 0.0446 0.0453 0.0446

π0 0.1173 0.1174 0.1173 0.0568 0.0565 0.0568

0.0184 0.0189 0.0184 0.0072 0.0079 0.0072

0.0344 0.0379 0.0344 0.0090 0.0099 0.0090

π̄0 0.2326 0.2373 0.2326 0.1176 0.1196 0.1176

0.1106 0.1111 0.1106 0.0984 0.0991 0.0984

π1 0.1165 0.1154 0.1165 0.0672 0.0650 0.0672

0.0255 0.0259 0.0255 0.0125 0.0133 0.0125

0.0208 0.0208 0.0208 0.0065 0.0067 0.0065

π̄1 0.2734 0.2732 0.2734 0.1846 0.1841 0.1846

0.1042 0.1044 0.1042 0.1134 0.1136 0.1134

π2 0.0662 0.0643 0.0662 0.0453 0.0422 0.0453

0.0200 0.0202 0.0200 0.0120 0.0126 0.0120

0.0093 0.0090 0.0093 0.0035 0.0034 0.0035

π̄2 0.1997 0.1979 0.1997 0.1742 0.1718 0.1742

0.0676 0.0675 0.0676 0.0890 0.0887 0.0890

π3 0.0292 0.0272 0.0292 0.0240 0.0207 0.0240

0.0112 0.0112 0.0112 0.0082 0.0083 0.0082

0.0038 0.0034 0.0038 0.0017 0.0015 0.0017

π̄3 0.1118 0.1093 0.1118 0.1229 0.1192 0.1229

Promodel

We compare the values of
∑3

k=0 π̄k with the queue empty rate obtained by using

simulation in ProModel. The variable values are given as (λ1, p, λ2) = (10, p, 10),

(γ1, p, γ2) = (20, p, 5), and p varies from 0.2 to 0.9, with µ = 10. Table 5.8 shows
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the comparison of numerical results.

Table 5.8: Comparison of the queue empty rates of three servers.

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π0+π1+π2+π3 0.9997 0.9985 0.9945 0.9846 0.9625 0.9158 0.8174 0.5993

(Matrix geometric method)

Queue empty rate 0.9997 0.9985 0.9954 0.9854 0.9633 0.9214 0.8255 0.6017

(Promodel 20 hours)

It shows the same situation like the queueing with two servers. According to

Tables 5.5-5.7, we find that if the value of p is smaller, the πi value of three methods

are very close. But when the value of p is closed to its upper bound, the πi’s are a

little different.

Inter-departure times

Now, we begin by describing the two arrival processes as (λ1, p, λ2) = (10, 0.4, 10),

(γ1, p, γ2) = (20, 0.4, 5), and µ = 10.

Then, we find that when there remain at least three customers in the system,

the inter-departure time characteristics are the same for all these cases (k ≥ 3).

The infinitesimal generator matrix for the departure process G31 has three different

segmentations are given by

G31 =

0 1 2 3+

0 B00 C 0 0

1 0 B11 C 0

2 0 0 B22 Ĉ

3+ 0 0 0 SSin

,
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where sub-matrices given by

Ĉ = C · 1 =


12

4

8

0

 ,

SSin = S1 ⊕ S1 ⊕ S1 =
[
−30

]
.

Thus, we have

G31 =



−30 12 6 0 12 0 0 0 0 0 0 0 0

5 −15 0 6 0 4 0 0 0 0 0 0 0

10 0 −30 12 0 0 8 0 0 0 0 0 0

0 10 5 −15 0 0 0 0 0 0 0 0 0

0 0 0 0 −40 12 6 0 12 0 0 0 0

0 0 0 0 5 −25 0 6 0 4 0 0 0

0 0 0 0 10 0 −40 12 0 0 8 0 0

0 0 0 0 0 10 5 −25 0 0 0 0 0

0 0 0 0 0 0 0 0 −50 12 6 0 12

0 0 0 0 0 0 0 0 5 −35 0 6 4

0 0 0 0 0 0 0 0 10 0 −50 12 8

0 0 0 0 0 0 0 0 0 10 5 −35 0

0 0 0 0 0 0 0 0 0 0 0 0 −30



.

The probabilities of the departure-process system starting in the various states

d = (d0,d1,d2, d3+) are made up of the departure point probabilites, with

d0 = π1A10/λ,

d1 = π2A21/λ,

d2 = π3A32/λ,

d3+ = (
∞∑
n=4

πnA/λ)1.
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This series can be written in closed form as

d3+ = (
∞∑
n=4

π3R
n−3A/λ)1

= π3[(I−R)−1 − I]A/λ)1.

By above equations. We can compute d

d0 = (0.1280, 0.2480, 0.0698, 0.1100)

d1 = (0.0989, 0.1226, 0.0448, 0.0424)

d2 = (0.0407, 0.0347, 0.0158, 0.0105)

d3+ = 0.0338

Moments of inter-departure times

The stationary inter-departure time is of the phase type distribution characterized

by [d,G31]. Thus, from Neuts [8] we know that the moments of inter-departure

times random variable X are given by

E[X] = (−1)d(G31)
−11.

Then we use different p to compute E[X] by Matlab and Promodel :

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E[X] Matlab 0.4846 0.2991 0.2061 0.1500 0.1123 0.0851 0.0643 0.0475

E[X] Promodel 0.50 0.31 0.21 0.15 0.11 0.08 0.06 0.04

and we use the same parameters to compute V ar[X] by Matlab and Promodel,

V ar[X] = E[X2]− E[X]2.

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V ar[X] Matlab 0.2712 0.1093 0.0543 0.0299 0.0172 0.0099 0.0055 0.0027

V ar[X] Promodel 0.32 0.1176 0.0516 0.0344 0.0156 0.0119 0.0051 0.0025
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Lagk correlations between successive departures

To get the lagk correlations of the output inter-departure times, it is necessary to

develop the infinitesimal generator matrix Ĝ3 segmented into two matrices: the in-

ternal transitions (without departures) G31 and the matrix containing the departure

transition G32 such that Ĝ3 = G31 + G32.

The matrix G32 is characterized as

G32 =

0 1 2 3+

0 0 0 0 0

1 A10 0 0 0

2 0 A21 0 0

3+ 0 0 (1− t) Â32 tSSout

,

where t is the probability that departure leaves the system with at least three cus-

tomers remaining. We compute t as

t =

∑∞
a=4 πa1

π31 +
∑∞

a=4 πa1
=

d3+

d21 + d3+

=
d3+

1− d01− d11
= 0.2494.

Two of these sub-matrices are given by

Â32 = θ ⊗ (S1o ⊕ S1o ⊕ S1o) = [0.1838, 0.4412, 0.1103, 0.2647]⊗ [30],

SSout = S1o ⊕ S1o ⊕ S1o = [30].

Thus, we have
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G32 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0 0 0 0

0 0 10 0 0 0 0 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0 0 0 0 0 0

0 0 0 0 0 20 0 0 0 0 0 0 0

0 0 0 0 0 0 20 0 0 0 0 0 0

0 0 0 0 0 0 0 20 0 0 0 0 0

0 0 0 0 0 0 0 0 4.1391 9.9339 2.4835 5.9604 7.4831



.

Given G31 and G32 matrices, from Bodrog, Horvath, Telek [2], and Telek, Hor-

vath [11], we have that the lagk correlation is computed by

lagk =
(λ)2d(−G31)

−1((−G31)
−1G32)

k(−G31)
−11− 1

2(λ)2d(−G31)−21− 1)
,

where λ = (p[( 1
λ1
p + ( 1

λ1
+ 1

λ2
)(1− p)]−1 + p[( 1

γ1
p + ( 1

γ1
+ 1

γ2
)(1− p)]−1 = 4.8529) is

the average effective arrival rate. We can compute lagk (k = 1, 2, 3, 4),

lag1 = 0.0344, lag2 = 0.0133, lag3 = 0.0111, lag4 = 0.0106.

5.3 Queueing models with more than twenty servers

With twenty servers

Here, we present numerical results of queueing systems with twenty servers. The pa-

rameters of two arrival processes are given with (λ1, p, λ2) = (10, 0.4, 10), (γ1, p, γ2) =

(20, 0.4, 5), and let µ = 0.8.
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The numerical results are compared in three different approaches, MA repre-

sents matrix geometric solution procedure, RA represents Ramaswami’s formula,

and LU represents LU factorization.

Then, it gives the solutions.

π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

MA 0.0040 0.0202 0.0525 0.0939 0.1303 0.1491 0.1464

RA 0.0040 0.0202 0.0525 0.0939 0.1303 0.1491 0.1465

LU 0.0040 0.0202 0.0525 0.0939 0.1302 0.1490 0.1464

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

MA 0.1269 0.0989 0.0703 0.0461 0.0281 0.0161 0.0087

RA 0.1269 0.0989 0.0703 0.0461 0.0281 0.0161 0.0087

LU 0.1269 0.0988 0.0703 0.0461 0.0281 0.0161 0.0087

π̄i π̄14 π̄15 π̄16 π̄17 π̄18 π̄19 π̄20

MA 0.0045 0.0022 0.0010 0.0005 0.0002 0.0000 0.0000

RA 0.0045 0.0022 0.0010 0.0005 0.0002 0.0000 0.0000

LU 0.0045 0.0022 0.0010 0.0005 0.0002 0.0000 0.0000

According to the above three forms, we can find that the values calculated by

three methods are almost equal.

Numerical experiments by changing of p with n = 20

Next, we consider the system with twenty servers, where p varies from 0 to 0.75.

Here, parameters of arrival processes are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =

(20, p, 5), and let µ = 0.8.

By Lemma 1, we have 0 6 p < w = 0.8098.

Table 5.9 shows the comparison of numerical results with three different meth-

ods.
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Table 5.9: The queue empty rate of twenty servers versus probabilities p.
p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Matrix geometric method 1.0000 0.9998 0.9990 0.9953 0.9822 0.9430 0.8421 0.6122

Ramawami 1.0000 0.9998 0.9990 0.9953 0.9828 0.9468 0.8582 0.6570

LU factorization 1.0000 0.9998 0.9990 0.9953 0.9822 0.9430 0.8421 0.6122

With twenty-five servers

Here, we present numerical results of queueing systems with twenty-five servers.

The parameters of two arrival processes are given with (λ1, p, λ2) = (10, 0.5, 10),

(γ1, p, γ2) = (20, 0.5, 5), and let µ = 0.9.

The numerical results are compared in three different approaches. MA repre-

sents matrix geometric solution procedure, RA represents Ramaswami’s formula,

and LU represents LU factorization.

Then, it gives the solutions.

π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

MA 0.0015 0.0084 0.0251 0.0521 0.0841 0.1124 0.1294

RA 0.0015 0.0084 0.0251 0.0521 0.0841 0.1124 0.1294

LU 0.0015 0.0084 0.0251 0.0521 0.0841 0.1124 0.1294

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

MA 0.1317 0.1208 0.1014 0.0786 0.0569 0.0387 0.0249

RA 0.1317 0.1208 0.1014 0.0786 0.0569 0.0387 0.0249

LU 0.1317 0.1208 0.1014 0.0786 0.0569 0.0387 0.0249

π̄i π̄14 π̄15 π̄16 π̄17 π̄18 π̄19 π̄20

MA 0.0152 0.0088 0.0049 0.0026 0.0013 0.0007 0.0003

RA 0.0152 0.0088 0.0049 0.0026 0.0013 0.0007 0.0003

LU 0.0152 0.0088 0.0049 0.0026 0.0013 0.0007 0.0003

π̄i π̄21 π̄22 π̄23 π̄24 π̄25

MA 0.0001 0.0000 0.0000 0.0000 0.0000

RA 0.0001 0.0000 0.0000 0.0000 0.0000

LU 0.0001 0.0000 0.0000 0.0000 0.0000
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According to the above three forms, we can find that the values calculated by

three methods are almost equal.

Numerical experiments by changing of p with n = 25

Next, we consider the system with twenty-five servers, where p varies from 0 to

0.85. Here, parameters of arrival processes are given by (λ1, p, λ2) = (10, p, 10),

(γ1, p, γ2) = (20, p, 5), and let µ = 0.9.

By Lemma 1, we have 0 6 p < w = 0.9206.

Table 5.10 shows the comparison of numerical results with three different meth-

ods.

Table 5.10: The queue empty rate of twenty-five servers versus probabilities p.
p 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Matrix geometric method 1.0000 1.0000 0.9998 0.9988 0.9942 0.9769 0.9201 0.7562

Ramawami 1.0000 1.0000 0.9998 0.9988 0.9943 0.9779 0.9266 0.7835

LU factorization 1.0000 1.0000 0.9998 0.9986 0.9942 0.9769 0.9201 0.7562

With thirty servers

Here, we present numerical results of queueing systems with thirty servers. The pa-

rameters of two arrival processes are given with (λ1, p, λ2) = (10, 0.6, 10), (γ1, p, γ2) =

(20, 0.6, 5), and let µ = 1.

The numerical results are compared in three different approaches, MA repre-

sents matrix geometric solution procedure, RA represents Ramaswami’s formula,

and LU represents LU factorization.

Then, it gives the solutions.
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π̄i π̄0 π̄1 π̄2 π̄3 π̄4 π̄5 π̄6

MA 0.0005 0.0032 0.0110 0.0258 0.0474 0.0723 0.0953

RA 0.0005 0.0032 0.0110 0.0258 0.0474 0.0723 0.0953

LU 0.0005 0.0032 0.0110 0.0258 0.0474 0.0723 0.0953

π̄i π̄7 π̄8 π̄9 π̄10 π̄11 π̄12 π̄13

MA 0.1113 0.1175 0.1136 0.1018 0.0853 0.0672 0.0501

RA 0.1113 0.1175 0.1136 0.1018 0.0853 0.0672 0.0501

LU 0.1113 0.1175 0.1136 0.1018 0.0853 0.0672 0.0501

π̄i π̄14 π̄15 π̄16 π̄17 π̄18 π̄19 π̄20

MA 0.0355 0.0240 0.0156 0.0097 0.0058 0.0033 0.0019

RA 0.0355 0.0240 0.0156 0.0097 0.0058 0.0033 0.0019

LU 0.0355 0.0240 0.0156 0.0097 0.0058 0.0033 0.0019

π̄i π̄21 π̄22 π̄23 π̄24 π̄25 π̄26 π̄27

MA 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000

RA 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000

LU 0.0010 0.0005 0.0003 0.0001 0.0000 0.0000 0.0000

π̄i π̄28 π̄29 π̄30

MA 0.0000 0.0000 0.0000

RA 0.0000 0.0000 0.0000

LU 0.0000 0.0000 0.0000

According to the above three forms, we can find that the values calculated by

three methods are almost equal.

Numerical experiments by changing of p with n = 30

Next, we consider the system with thirty servers, where p varies from 0 to 0.95. Here,

parameters of arrival processes are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =

(20, p, 5), and let µ = 1.

By Lemma 1, we have 0 6 p < w = 1.
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Table 5.11 shows the comparison of numerical results with three different meth-

ods.

Table 5.11: The queue empty rate of thirty servers versus probabilities p.
p 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Matrix geometric method 1.0000 1.0000 0.9999 0.9995 0.9973 0.9860 0.9377 0.7493

Ramawami 1.0000 1.0000 0.9999 0.9995 0.9973 0.9864 0.9441 0.7655

LU factorization 1.0000 1.0000 0.9999 0.9995 0.9973 0.9860 0.9377 0.7493

Numerical comparsion with simulation of twenty

servers

We compare the values of
∑20

k=0 π̄k with the queue empty rate obtained by using

simulation in ProModel. The variable values are given as (λ1, p, λ2) = (10, p, 10),

(γ1, p, γ2) = (20, p, 5), and p varies from 0 to 0.75, µ = 0.8. Table 5.12 shows the

comparison of numerical results.

Table 5.12: Comparison of queue empty rates of twenty servers.

p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

π0+π1+· · ·+π20 1.0000 0.9998 0.9990 0.9953 0.9822 0.9430 0.8421 0.6122

(Matrix geometric method)

Queue empty rate 1.0000 1.0000 0.9998 0.9974 0.9899 0.9636 0.8569 0.6025

(Promodel 20 hours)

Figure 5.1: The queue empty rate determined by four different methods
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Figure 5.2: Relative errors of three methods compared with Promodel

Accorrding to two Figures 5.1-2, we can find that when p is close to its upper

bound (0.8098), the relative error becomes large.

Numerical comparsion with simulation of twenty-

five servers

We compare the values of
∑25

k=0 π̄k with the queue empty rate obtained by using

simulation in ProModel. The variable values are given as (λ1, p, λ2) = (10, p, 10),

(γ1, p, γ2) = (20, p, 5), and p varies from 0 to 0.85, µ = 0.9. Table 5.13 shows the

comparison of numerical results.

Table 5.13: Comparison of queue empty rates of twenty-five servers.

p 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

π0+π1+· · ·+π25 1.0000 1.0000 0.9998 0.9988 0.9942 0.9769 0.9201 0.7562

(Matrix geometric method)

Queue empty rate 1.0000 1.0000 0.9999 0.9998 0.9945 0.9772 0.9241 0.7547

(Promodel 20 hours)

Accorrding to two Figures 5.3-4, we can find that when p is close to its upper

bound (0.9206), the relative error becomes large.
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Figure 5.3: The queue empty rate determined by four different methods

Figure 5.4: Relative errors of three methods compared with Promodel

Numerical comparsion with simulation of thirty

servers

We compare the values of
∑30

k=0 π̄k with the queue empty rate obtained by using

simulation in ProModel. The variable values are given as (λ1, p, λ2) = (10, p, 10),

(γ1, p, γ2) = (20, p, 5), and p varies from 0 to 0.95, µ = 1. Table 5.14 shows the

comparison of numerical results.

Table 5.14: Comparison of queue empty rates of thirty servers.

p 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

π0+π1+· · ·+π30 1.0000 1.0000 0.9999 0.9995 0.9973 0.9860 0.9377 0.7493

(Matrix geometric method)

Queue empty rate 1.0000 1.0000 0.9998 0.9998 0.9979 0.9846 0.9526 0.7707

(Promodel 20 hours)

Accorrding to two Figures 5.5-6, we can find that when p is close to its upper
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Figure 5.5: The queue empty rate determined by four different methods

Figure 5.6: Relative errors of three methods compared with Promodel

bound (1), the relative error becomes large.

Inter-departure times with simulation of twenty

servers

Now, we begin by describing the two arrival processes as (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =

(20, p, 5), and let µ = 0.8.

Moments of inter-departure times with n = 20

We obtain the moments of inter-departure times.
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p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

E[X] Matlab 0.2061 0.1750 0.1500 0.1295 0.1123 0.0997 0.0851 0.0741

E[X] Promodel 0.21 0.18 0.15 0.13 0.12 0.10 0.08 0.07

Then we use the same parameters to compute V ar[X] by Matlab and Promodel.

V ar[X] = E[X2]− E[X]2

p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

V ar[X] Matlab 0.0451 0.0325 0.0239 0.0178 0.0143 0.0101 0.0076 0.0057

V ar[X] Promodel 0.0459 0.0376 0.0275 0.0171 0.0128 0.0100 0.0070 0.0049

The lagk correlations of the output inter-departure times.

p 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

lag1 0.0245 0.0253 0.0258 0.0260 0.0258 0.0248 0.0223 0.0163

lag2 0.0208 0.0220 0.0228 0.0234 0.0236 0.0230 0.0209 0.0154

lag3 0.0177 0.0191 0.0202 0.0211 0.0215 0.0213 0.0195 0.0146

lag4 0.0151 0.0166 0.0179 0.0190 0.0197 0.0197 0.0182 0.0137

5.4 Numerical experiments with more than forty

servers

Condition numbers

In this section, we compare the condition numbers given by RA and LU methods

with forty, fifty, sixty, seventy and eighty servers.

First, we recall the condition number. In our example, the condition number

associated with the linear system π∗Q3 = [1 0] in (3.6) and (3.7) gives a bound on

how inaccurate the solution π∗ will be after an approximate solution. In particular,

if the condition number is large, even a small error in [1 0] may cause a large error

in π∗. On the other hand, if the condition number is small then the error in π∗ will

not be much bigger than the error in [1 0].
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Let ξ be the error in [1 0]. Since that Q3 is a square matrix, the error in the

solution [1 0]Q−1
3 is ξQ−1

3 . The ratio of the relative error in the solution to the

relative error in [1 0] is
‖ξQ−1

3 ‖/‖[1 0]Q−1
3 ‖

‖ξ‖/‖[1 0]‖
.

This is easily transformed to

(‖ξQ−1
3 ‖)/‖ξ‖) · (1/‖[1 0]Q−1

3 ‖).

The maximum value is easily seen to be the product of the two operator norms:

κ(Q3) = ‖Q3‖ · ‖Q−1
3 ‖,

κ(Q3) is the condition number of Q3.

We consider the matrix Q3 in Matrix geometric method and LU factorization.

Because of π∗Q3 = [1 0], we apply Q3 to compute the condition number by Matlab

in the following. The parameters of arrival processes are given by (λ1, p, λ2) =

(10, p, 10), (γ1, p, γ2) = (20, p, 5), and consider ρ = λ/(nµ) from 0.04 to 0.88 with

respect to different p.

Figure 5.7: Condition number determined by Q3

Next, we define the matrix P = B0 − B1V
−1
0 B−1 in (3.9) and (3.7) with RA

method. Let the first column of P be replaced by the column vector (1, · · · ,1, (I−

R)−1 · 1)T . Then, the modified P is rewritten as a new matrix P1. Because of

π∗P1 = [1 0], we apply P1 to compute the condition number by Matlab in the
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following. The parameters of arrival processes are given by (λ1, p, λ2) = (10, p, 10),

(γ1, p, γ2) = (20, p, 5), and consider ρ = λ/(nµ) from 0.04 to 0.88 with respect to

different p’s.

Figure 5.8: Condition number determined by P1

Queue empty rate

In this section, we consider the queue empty rate by comparing MA, RA and LU

methods wit forty, fifty, sixty, seventy and eighty servers.

The parameters of arrival processes are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) =

(20, p, 5), and consider ρ = λ/(nµ) from 0.04 to 0.88 with respect to different p’s.

Figure 5.9: The queue empty rate computed by LU method

57



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Then we use the RA method to compute the queue empty rate. The parameters

of arrival processes are given by (λ1, p, λ2) = (10, p, 10), (γ1, p, γ2) = (20, p, 5), and

from 0.04 to 0.88 with respect to different p’s.

Figure 5.10: The queue empty rate computed by RA method
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Chapter 6

Conclusion

In this thesis, we present a new computing scheme for computing the stationary

probabilities of a phase-type queueing model with multiple servers. The matrix

geometric solution procedure has been compared by using Ramaswami’s formula and

blocks LU factorization. With LU factorization, an efficient algorithm for solving

stationary probabilities is provided to deal with the complex computation of large

matrices due to a large number of system states. Through a number of smaller

sub-matrices, the state balance equations of a phase-type MAP/M/n queue are

solved. Numerical examples are given to demonstrate the proposed matrix geometric

solution procedure. Performance measures of these models are also illustrated with

a number of approximation and simulation results. As the traffic is light, we find

that the stationary probabilities obtained from our approaches and simulations are

almost the same. At last, we use two different methods (Matlab and Promodel) to

compute the moments of inter-departure times and the variance. We can find the

values of two different methods are almost the same.
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Appendix A

Theorem LU.(Thm 3.5.2 in [9] )

Suppose that A ∈Mn×n and that rank A = k. If

detA({1, · · · , j}) 6= 0, j = 1, · · · , k,

then A may be factored as

A = LU

with L ∈Mn×n lower triangular and U ∈Mn×n upper triangular. Furthermore, the

factorization may be chosen so that either L or U is nonsingular; both L and U may

be chosen nonsingular if and only if k = n, that is, if and only if A is nonsingular.

Proof :

We first show that, under the assumption on leading minors, A({1, · · · , k}) may

be factored as L({1, · · · , k}) U({1, · · · , k}), with both nonsingular. It is possible to

solve for the relevant entries of L and U, one by one. Let L = [lij] and U = [uij].

Set u11 = 1, and let li1 = ai1, i = 1, · · · , k.

Solve for

u1j =
a1j

l11

, j = 2, · · · , k.

Continue. Set u22 = 1 and let li2 = ai2 − li1u12, i = 2, · · · , k. Solve for

u2j =
a2j − l21u1j

l22

, j = 3, · · · , k.

Continue, letting successive diagonal entries of U be 1 and then solving for the

next column of L({1, · · · , k}) and then the next row of U({1, · · · , k}).

Each time there is one equation in one unknown to be solved. This equation will

be solvable since each lii is nonzero (because det L({1, · · · , i})×det U({1, · · · , i}) =

det A({1, · · · , i})). this completes the factorization of A({1, · · · , k}).
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Partition A. Since rank A = k = rank A11, we see that the rows of [A21 A22]

are unique linear combinations of rows of [A11 A12], that is

A21 = BA11 and A22 = BA12,

for some uniquely determined B ∈ Mn−k,k. Now partition the desired L and U,

noting that nonsingular L11 and U11 have been

U12 = L−1
11 A12 and L21 = A21U

−1
11 .

Then

A22 = L21U12+L22U22 = A21U
−1
11 L−1

11 A12+L22U22 = BA11A
−1
11 A12+L22U22 =

A22 + L22U22

To complete the factorization, it is necessary and sufficient that L22U22 = 0

We may, for example, choose L22 (respectively U22) to be any nonsingular lower

(respectively upper) triangular matrix in Mn−k we like and choose U22 (respectively

L22 ) to be 0. Since L11 and U11 are nonsingular, either L or U may be chosen to

be nonsingular. If k = n, L = L11 and U = U11 will be nonsingular; if k < n, not

both L and U can be nonsingular because A is singular. This completes the proof.
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Appendix B

Theorem D.(Thm 3.5.6 in [9] )

Let Zk ∈Mk×k be nonsingular. Then there is a permutation matrix D ∈Mk×k

such that

det(DTZk)({1, · · · , j}) 6= 0, j = 1, · · · , k

Note that DTZk is just a recordering of the rows of Zk.

Proof :

The demonstrations is by induction on k, If k =1 or 2, the result is clear by

inspection; suppose that it is valid up to and including k−1. Consider a nonsingular

Zk ∈ Mk×k matrix and delete its last column. The remaining k − 1 cloumns are

linearly independent and hence contain k − 1 linearly independent rows. Permute

these rows to the first k − 1 positions and apply the induction hypothesis to the

nonsingular upper (k − 1)-by-(k − 1) submatrix. This determines a desired overall

permutation. Since DTZk is nonsingular, the proof is complete.
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Appendix C

Following is the code of the program.

function Rmatrixn(lam1,lam2,gam1,gam2,mu,p,n)

%%%%%%% input data

lam1=10;

lam2=10;

gam1=5;

gam2=20;

mu=input(’\n Please input the service rate at all phase, \mu=’);

p=input(’\n Please input the probability that the customer leaves the system after the first phase of the service time, \p=’);

n=input(’\n Please input the number of server, \n=’);

%%%%%%%%%%%%%%%%%% The range of p%%%%%%%%%%%%%%%%%%%%

prange=1/2/(gam1*gam2*lam1+lam1*lam2*gam1+n*mu*lam1*gam1)*(lam1*lam2*gam2+gam1*gam2*lam1+lam1*lam2*gam1+gam1*gam2*lam2+n*mu*lam2*gam1+

2*n*mu*lam1*gam1+n*mu*lam1*gam2-(2*lam1*lam2^2*gam1^2*gam2+2*lam1^2*lam2*gam1^2*gam2+2*lam1^2*lam2^2*gam1*gam2+

2*gam1*gam2^2*lam1^2*lam2+2*gam1^2*gam2^2*lam1*lam2+2*gam1^2*gam2*lam2^2*n*mu+2*lam1^2*lam2*gam2^2*n*mu+n^2*mu^2*lam1^2*gam2^2+

lam1^2*lam2^2*gam2^2+lam1^2*lam2^2*gam1^2+gam1^2*gam2^2*lam1^2+gam1^2*gam2^2*lam2^2+2*lam1*lam2^2*gam2^2*gam1+

n^2*mu^2*lam2^2*gam1^2-2*lam1*lam2^2*gam2*n*mu*gam1+2*lam1^2*lam2*gam2*n*mu*gam1-2*gam1*gam2^2*lam1*n*mu*lam2+

2*gam1^2*gam2*lam1*n*mu*lam2-2*gam1*gam2^2*lam1^2*n*mu-2*lam1*lam2^2*gam1^2*n*mu-2*n^2*mu^2*lam2*gam1*lam1*gam2)^(1/2))

%%%%%%%%%% Define the basic matrices %%%%%%%%%%%%%%

T1=[-lam1 (1-p)*lam1;lam2 -lam2];

T10=[p*lam1;0];

T10p=kron(T10,[1,0]);

T2=[-gam1 (1-p)*gam1;gam2 -gam2];

T20=[p*gam1;0];

T20p=kron(T20,[1,0]);

Tp=kron(T10p,eye(2))+kron(eye(2),T20p);% go into server transposed matrix

S1=[-mu];

S10=[mu];%departure server transposed matrix

An=kron(n*mu,eye(4));

Bn=[-lam1-gam1-n*mu,(1-p)*gam1,(1-p)*lam1,0;gam2,-lam1-gam2-n*mu,0,(1-p)*lam1;

lam2,0,-lam2-gam1-n*mu,(1-p)*gam1;0,lam2,gam2,-lam2-gam2-n*mu];

C=Tp;

F=[kron(T1,eye(2))+kron(eye(2),T2)+C,ones(4,1)];

%%%%%%%%%%%%%% mean arrival rate%%%%%%%%%%%%%%%%%%%%%%

lam=(inv((1/lam1)*p + ((1/lam1)+(1/lam2))*(1-p))+inv((1/gam1)*p + ((1/gam1)+(1/gam2))*(1-p)))*p %total arrival rate

%%%%%%%%%%%%%% Compute R matrix %%%%%%%%%%%%%%%%%%%%%%

R2=zeros(4,4);

R1=-C*inv(Bn);

i=0;

delta=10;

while delta > (10^-8)

R2=-C*inv(Bn)-R1^2*An*inv(Bn);

delta=norm(R2-R1,inf);

R1=R2;

i=i+1;

end

i;

R2;

%%%%%%% Start Matrix geometric method %%%%%%%%%

t1 = cputime;

Qn=[zeros(4*(n+1),4*(n+1)),ones(4*(n+1),1)];% steady state

Qn(4*(n+1)-3:4*(n+1),4*(n+1)-3:4*(n+1)+1)=[Bn+R2*An,inv(eye(4)-R2)*ones(4,1)];

for k=1:n

Qn(4*(k+1)-3:4*(k+1),4*k-3:4*k)= kron(k*mu,eye(4)) ;

Qn(4*k-3:4*k,4*k-3:4*k)=[-lam1-gam1-(k-1)*mu,(1-p)*gam1,(1-p)*lam1,0;

gam2,-lam1-gam2-(k-1)*mu,0,(1-p)*lam1;

lam2,0,-lam2-gam1-(k-1)*mu,(1-p)*gam1;

0,lam2,gam2,-lam2-gam2-(k-1)*mu] ;

Qn(4*k-3:4*k,4*(k+1)-3:4*(k+1))=C ;
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end

Qn;

sol = [zeros(1,(n+1)*4),1] / Qn % Use the matrix geometric procedure to solve pi_0 pi_1 pi_2... pi_n

sum(sol) %The queue empty rate by the matrix geometric

t2 = cputime;

t2-t1% Cpu time of the matrix geometric method

%%%%%%%%%%%%% Start Ramaswami’s formula%%%%%%%%%

t3 = cputime;

A01=[An] ;

A0=[Bn];

A1=[C];

B_0=[zeros(4*(n+1),4*(n+1))];

B_0(4*n+1:4*n+4,4*n+1:4*n+4)=[-lam1-gam1-n*mu,(1-p)*gam1,(1-p)*lam1,0;gam2,-lam1-gam2-n*mu,0,(1-p)*lam1;

lam2,0,-lam2-gam1-n*mu,(1-p)*gam1;0,lam2,gam2,-lam2-gam2-n*mu];

for k=1:n

B_0(4*(k+1)-3:4*(k+1),4*k-3:4*k)= kron(k*mu,eye(4)) ;

B_0(4*k-3:4*k,4*k-3:4*k)=[-lam1-gam1-(k-1)*mu,(1-p)*gam1,(1-p)*lam1,0;

gam2,-lam1-gam2-(k-1)*mu,0,(1-p)*lam1;

lam2,0,-lam2-gam1-(k-1)*mu,(1-p)*gam1;

0,lam2,gam2,-lam2-gam2-(k-1)*mu] ;

B_0(4*k-3:4*k,4*(k+1)-3:4*(k+1))=C ;

end

B_0;

B1=[zeros(4*n,4);C];

B01=[zeros(4,4*n),An];

R3=zeros(4,4);

R1=-C*inv(Bn);

i=0;

delta=10;

while delta > (10^-8)

R3=-An*inv(Bn)-R1^2*C*inv(Bn);

delta=norm(R3-R1,inf);

R1=R3;

i=i+1;

end

i;

R3;

U0=Bn+C*R3;

P=B_0-B1*inv(U0)*B01;

sol = [zeros(1,4*(n+1)),1] / [P,[ones(4*(n-1),1);inv(eye(4)-R2)*ones(4,1);zeros(4,1)]]% Use Ramaswami’s formula to solve pi_0,...pi_n

sum(sol) %The queue empty rate of Ramaswami

t4 = cputime;

t4-t3 % CPU time by Ramaswami

%%%%%%%%%%%%%%%% Starting of verifying Matrix with a replaced column %%%%%%%%%%%

Qn=[zeros(4*(n+1),4*(n+1))];% steady state

Qn(4*(n+1)-3:4*(n+1),4*(n+1)-3:4*(n+1))=[-lam1-gam1-(n)*mu,(1-p)*gam1,(1-p)*lam1,0;gam2,-lam1-gam2-(n)*mu,0,(1-p)*lam1;

lam2,0,-lam2-gam1-(n)*mu,(1-p)*gam1;0,lam2,gam2,-lam2-gam2-(n)*mu]+R2*kron(n*mu,eye(4));

for k=1:n

Qn(4*(k+1)-3:4*(k+1),4*k-3:4*k)= kron(k*mu,eye(4)) ;

Qn(4*k-3:4*k,4*k-3:4*k)=[-lam1-gam1-(k-1)*mu,(1-p)*gam1,(1-p)*lam1,0;

gam2,-lam1-gam2-(k-1)*mu,0,(1-p)*lam1;

lam2,0,-lam2-gam1-(k-1)*mu,(1-p)*gam1;

0,lam2,gam2,-lam2-gam2-(k-1)*mu] ;

Qn(4*k-3:4*k,4*(k+1)-3:4*(k+1))=C;

end

Qn;

J1=[ones(4*(n),1);inv(eye(4)-R2)*ones(4,1)];

Z=[J1, Qn( 1:4*(n+1),2:4*(n+1) )];

sol = [1,zeros(1,4*(n+1)-1)] / [Z];%

sum(sol) %The queue empty rate

%%%%%%%%%%%%%%% Start LU factorization%%%%%%%%%%%%%%%
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t5 = cputime;

J=(J1)’;% Transpose

K=[J1, Qn( 1:4*(n+1),2:4*(n+1) )]’;%Use Gaussian elimination

temp=[J];

for i=4*(n+1):-1:9

for j=i-1:-1:1

temp(j)=temp(j)-(K(i-4,j)/K(i-4,i))*temp(i);

end

temp(i)=0;

end

temp;%Use Gaussian elimination to make first row to be zero

%%%%%%%%%%%% Compute Z_n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S=[temp;K(2:4*(n+1),1:4*(n+1))];%Use Gaussian elimination

%%%%%%%%%%%%% Algorithm 1: LU factorization %%%%%%%%%%

U(1:4,1:4)=S(1:4,1:4);

for i = 2:(n+1)

L((i-1)*4+1:(i-1)*4+4,(i-2)*4+1:(i-2)*4+4) = S((i-1)*4+1:(i-1)*4+4,(i-2)*4+1:(i-2)*4+4)*

/(U((i-2)*4+1:(i-2)*4+4,(i-2)*4+1:(i-2)*4+4));

U((i-1)*4+1:(i-1)*4+4,(i-1)*4+1:(i-1)*4+4) = S((i-1)*4+1:(i-1)*4+4,(i-1)*4+1:(i-1)*4+4)-L((i-1)*

4+1:(i-1)*4+4,(i-2)*4+1:(i-2)*4+4)*S((i-2)*4+1:(i-2)*4+4,(i-1)*4+1:(i-1)*4+4);

end

L;%get L1,L2,...,Ln

U;%get U1,U2,...,Un

%%%%%%%%%%%% Algorithm 2: Forward and backward substitution%%%%%%

y=zeros(4*(n+1),1);

for i=2:(n+1)

y(1:4,1)=[1;0;0;0];

y(4*i-3:4*i,1)=[zeros(4,1)-L((i-1)*4+1:(i-1)*4+4,(i-2)*4+1:(i-2)*4+4)*y(4*(i-1)-3:4*(i-1),1)];

end

y;%solve y1 y2...yn

x=zeros(4*(n+1),1);

x(4*(n+1)-3:4*(n+1),1)=1/(U(4*(n+1)-3:4*(n+1),4*(n+1)-3:4*(n+1)))*y(4*(n+1)-3:4*(n+1),1);

for i=(n+1):-1:2

x(4*(i-1)-3:4*(i-1),1)=1/(U(4*(i-1)-3:4*(i-1),4*(i-1)-3:4*(i-1))) * [y(4*(i-1)-3:4*(i-1),1)-S(4*(i-1)-3:4*(i-1),4*i-3:4*i)*x(4*i-3:4*i,1)];

end

x % Use LU factorization to get pi_0,pi_1,...,pi_n

sum(x) %The queue empty rate by the matrix geometric

t6 = cputime;

t6-t5 %Cpu time of the matrix geometric method
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Appendix D

List of frequantly used symbols in the thesis

symbol its mean

n the number of servers.

S1 an arrival stays in the server.

S1o an arrival finishes the service.

µ the service rate.

λ1 arrival rate in the first phase of the first stream.

λ2 arrival rate in the second phase of the first stream.

γ1 arrival rate in the first phase of the second stream.

γ2 arrival rate in the second phase of the second stream.

p the probability of an arrival to the queue.

B the internal phase changes for the composite arrival process.

C an arrival goes into the system.

A an arrival finishes the service, and departures the system.

θ stationary probability.

λ total arrival rate.

Tm correspond to phase transitions.

Tmo correspond to the rate as arrivals enter the systems phase transitions.

πk the vector of probabilities of k customers in the system.

Q the generator matrix of a continuous time Markovian process.

R means of the iterative procedure.

π∗
[

π0 π1 · · · πn−1 πn

]
V an upper triangular matrix.

W a lower triangular matrix.

H a submatrix of W.

V0 a submatrix of V.

P B0 −B1V
−1
0 B−1.
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symbol its mean

Ω a 4× 4 matrix which the first row is 1, else 0.

Zn a block tridiagonal matrix.

D permutation matrices.

E permutation matrices.

L a lower triangular matrix.

U an upper triangular matrix.

F a submatrix of U.

d0 the departure-point stationary probabilities.

Gn1 the generator matrix without departures for the departure process.

Gn2 the generator matrix with departures for the departure process.

Ĝn Gn1+Gn2

t the probability of departure leaves the system with at least

n customers remaining.

lagk the lagk correlation.
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