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Abstract

In this paper, we address the influence of bounded rationality on the well-known
elasticity puzzle. An agent-based consumption asset pricing model is built upon
Chen and Huang (2007a), and time series data of consumption and returns are gen-
erated from the the simulations of this model. With this artificial data, we apply
standard econometric methods to estimate the elasticity of intertemporal consump-
tion for both the systems of individual and aggregate Euler consumption equations.
A number of findings may shed light on the empirical study of the elasticity puzzle.
First, it is found that the agents’ built-in parameter of the elasticity of intertempo-
ral substitution is not able to be discovered by the standard econometric procedure;
instead, it can be underestimated, and can be further underestimated by using ag-
gregate data. Consequently, by the reciprocal relation, the coefficient of relative risk
aversion may be overestimated. Second, agents with better forecasting accuracy, who
in turn become wealthier, tend to exhibit higher estimated elasticities than those with
worse one, even though they both are are endowed with an identical elasticity. In
other words, the observed positive relation between wealth share and intertempo-
ral elasticity can be spurious. The role the heterogeneity in risk preference is also
analyzed.

Keyword: Bounded Rationality, Elasticity Puzzle, Risk Preference, Consumption Cap-
ital Asset Pricing Model, Agent-Based Computational Modeling, Genetic Algorithms

1 Introduction and Motivation

In this paper, an agent-based computational capital asset pricing model is applied to
address the issue, known as the elasticity puzzle, originating from a famous reciprocal
relation between the elasticity of intertemporal substitution and the relative risk aversion co-
efficient. By the reciprocal relation, the implied relative risk aversion coefficient can be
unexpectedly, and possibly unacceptably, high when the estimated elasticity of intertem-
poral substitution is so low and even closer to zero.



Existing studies, be they theoretical or empirical, on the elasticity puzzle are largely
confined to the conventional framework built upon the devices of rational expectations
and representative agents. A number of recent empirical studies, however, have docu-
mented that agents are heterogeneous in their elasticity of intertemporal substitution.!
Two questions immediately arise. The first one concerns the aggregation problem. If
the intertemporal elasticity is heterogeneous among agents, then what is the relation be-
tween the aggregate elasticity and its individual counterparts? This leads us to the very
basic issue raised by Alan Kirman, “whom or what does the representative individual
represent?” The second one is why the rich and the stockholders tend to have to high
intertemporal elasticities, and their opposites tend to have low ones. Why is such a be-
havioral parameter so critical in determining the wealth share of individuals??

Empirical studies also find that the Euler consumption equation applies well only to
the stock market participants, and not to all individuals. It is certainly plausible that not
all individuals can do optimization well. So, here comes the third question. Is it possible
that some agents who happen to do optimization well and hence behave closer to what
the Euler equation predicts eventually become wealthier, and for those who do not and
hence fail the Euler equation eventually become poor? Do the rich really have different
intertemporal elasticities as opposed to their opposites, or are they just “smarter” or with
a better luck? Is that possible the “observed” heterogeneity in intertemporal elasticity is
just spurious? In sum, what is the relation between the observable elasticity and the true
one, considering that agents are boundedly rational?

Using an agent-based computational model, we study a consumption capital asset
pricing model (CAPM, hereafter) composed of boundedly-rational interacting heteroge-
neous agents. These agents are heterogeneous in their forecasts (the way which they
learn from the past), saving and investment decisions, driven by an adaptive scheme,
specifically, genetic algorithms. Their preferences can be homogeneous or heteroge-
neous, depending on what we are asking. Simulating the model can generate a sequence
of time-series observations of individuals’ profiles, including beliefs, consumption, sav-
ings, and portfolios. Unlike most theoretical or empirical studies of the consumption
CAPM model, the agent-based computational model do not assume an exogenously
given stochastic process of returns and consumption. Instead, aggregate consumption,
asset prices, and returns are also endogenously generated with agents under specified
risk preferences and intertemporal elasticities. With this endogenously generated aggre-
gate and individual data, we are better equipped to answer the three questions posed
above in a fashion of survival dynamics.

The rest of the paper is organized as follows. We shall first give a little technical review
of the elasticity puzzle (Section 2.1), followed by a literature review on the reflections
upon the puzzle (Section 2.2). There are basically two kinds of reflections, namely the
one from the econometric viewpoint (Section 2.2.1), and the one from the theory view-
point (Sections 2.2.2 and 2.2.3). For the latter, we further distinguish the relaxation of
the assumption of the power utility function (Section 2.2.2) and the relaxation of the as-
sumption of the representative agent (Section 2.2.3). This background knowledge helps

IFor example, it is found that the intertemporal elasticity is different between the poor and the rich, and
is also different between stockholders and non-stockholders. See the literature review in Section 2.2.3.

2The question becomes even more puzzling given the irrelevance theorem of preferences to wealth share.
(Sandroni, 2000; Blume and Easley, 2004)



us define the departure of this paper (Section 2.2.4), which has an agent-based consump-
tion Capital Asset Pricing Model (Section 3) as a core. Technical details of the model
are left for Appendix A and Appendix B. Based on the proposed agent-based consump-
tion CAPM model, Section 4 proposes two experimental designs to examine the effect of
bounded rationality on the estimated elasticity, and the results are shown and analyzed
in Equation 5. The analysis is econometric and is based on the Euler consumption equa-
tion, whose derivation is briefly reviewed in Appendix C. Section 6 then closes the paper
with a few concluding remarks.

2 The Puzzle and the Reflections

2.1 Elasticity Puzzle

The elasticity of intertemporal substitution (EIS, hereafter), as a technical characterization
of economic behavior and a basic parameter of economic models, plays a pivotal role in
economic analysis. To name a few, its magnitude can determine the sensitivity of saving
to interest rate, the effect of capital income taxation (Summers, 1981; King and Rebelo,
1990), and the impact of uncertainty on the rate of economic growth (Jones, Mauelli and
Stachetti, 1999). Given its significance, a great deal of effort has been devoted to the
empirical study of its magnitude.

An early influential empirical finding was established in Hall (1988), which evidences
a low or, in fact, an almost zero intertemporal elasticity.

All the estimates presented in this paper of the intertemporal elasticity of sub-
stitution are small. Most of them are also quite precise, supporting the strong
conclusion that the elasticity is unlikely to be much above 0.1, and may well
be zero. (lbid, p. 340)

This result implies that consumption growth is completely insensitive to changes in
interest rates. Hall’s estimation is build upon the consumption capital asset pricing model,
originally put forwarded by Breeden (1979). A typical assumption in this model is that
preference is intertemporal separable. A significant consequence of making this assump-
tion is that the EIS and the risk attitude, the two distinct aspects of preference, are inter-
twined. Actually, the EIS and the risk aversion parameter are reciprocals of one another. If
we further assume that a representative agent who maximizes the expectation of a time
separable power utility function:

0 C]-*P

ug=E{) ﬁrlt_Lrp | O} 1)

r=0

where S is the rate of time preference, c; is the investor’s consumption in period t and
p is the coefficient of relative risk aversion. The mathematical expectation E(- |) is con-
ditioned on information available to agents at time t, ();. Then the reciprocal relation
becomes simply
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where  is the elasticity of intertemporal substitution.

The reciprocal relation puts Hall (1988) in a sharp contrast to Hansen and Singleton
(1982, 1983), which is commonly cited for evidence that the (constant) coefficient of rel-
ative risk aversion is small. Hall’s estimates suggest that the value of the intertempo-
ral elasticity of substitution, i.e. the reciprocal of the parameter estimated by Hansen
and Singleton, is much smaller than that implied by any of the Hansen-Singleton esti-
mates. The disparity defines an “elasticity puzzle” as phrased by Neely, Roy and White-
man (2001), “is the risk aversion parameter in the simple intertemporal consumption
CAPM small as in Hansen and Singleton (1982, 1983), or is it that its reciprocal, the in-
tertemporal elasticity of substitution, is small, as in Hall (1988)?"3

In a technical way, the elasticity puzzle can be summarized as the conflicts of estimating
the same coefficient in two regression equations. The one used in Hall (1988) and many
follow-ups is the consumption Euler equation,

Act = T+ Pre + &, 3)

where Ac is the consumption growth at time t, r¢, 1 is the real return on the asset at t, and
T is a constant. As well discussed by Hall (1988), the time aggregation problem, e.g., using
guarterly data instead of the monthly data, can cause the error §; be no longer white
noise. Instead, it is linear in the innovation to consumption growth and asset return,
and is correlated with the regressor ri. However, given a vector of instruments Z;_;
uncorrelated with the error, ¢ can be identified by the moment restriction

E[Z¢_1&] = 0. (4)

Here Z;_; typically consists of economic variables known at time t — 1, such as lagged
consumption growth and asset return. Equation (3) can be estimated by two-stage least
squares (TSLS) if the error is homoskedastic, or by linear generalized method of moments
(GMM) if the error is heteroskedastic.

Alternatively, the regression equation considered by Hansen and Singleton (1983) is
the reversed form of (3):

1
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where y is a constant and 71 is the error. The reciprocal of the EIS, which is also the
coefficient of the relative risk aversion p under CRRA utility, is then identified by the
moment restriction

E[Zi-1mt] = 0. (6)

The moment restriction (4) and (6) are equivalent up to a linear transformation.

The elasticity puzzle can then be exemplified by a comprehensive study by Camp-
bell (2003). Campbell (2003) gives a very extensive comparison between the estimates of
the two equations (3) and (5) by using many different countries’ data. He reports in his
Table 9 the results. Consider the case of using quarterly U.S. data (1947-1998) on non-

durable consumption and T-bill returns, the 95% interval for ¥ is [-0.14,0.28], and for i

3Depending on the exact formulation, it is sometimes also known as the risk-free rate puzzle. (Weil, 1989)



[-0.73,2.14]. Therefore, one reject the null hypothesis ¢ = 1 using equation (3), which in-
struments for T-bill return, but fails to reject ¢ = 1 using equation (5), which instruments
for consumption growth.*

2.2 Reflecting upon the Puzzle
2.2.1 Econometrics

Given this technical description, a natural way to reflect upon the elasticity puzzle is to
assume an econometric essence of the puzzle, and instruments Z; seem to attract wide
attention of econometricians. There are at least two major observations made about Z;.
The first observation is related to the choice of normalization for the moment restric-
tion. Although equations (4) and (6) correspond to the same moment restriction up to
a linear transformation, GMM is not invariant to such transformations. Therefore, the
choice of normalization for the moment restriction can affect point estimates and confi-
dence intervals. Nonetheless, the conventional asymptotic theory may make the choice
of normalization negligible in large samples, leading to the same inference of the EIS.
Therefore, the puzzle may be more than just a debate over whether normalization of the
key structural equation matters.

The second observation is pioneered by Neely, Roy and Whiteman (2001), which at-
tributes the disparate estimates of this fundamental parameter to failures of instrument
relevance. Instruments which are insufficiently correlated with endogenous variables,
also known as weak instruments, can cause estimators to be severely biased and the finite-
sample distribution of test statistics to depart sharply from the limiting distribution, lead-
ing to large size distortions in hypothesis tests. Neely, Roy and Whiteman (2001) note that
weak instruments are a problem in estimating the EIS because both consumption growth
and asset returns are notoriously difficult to predict. Because of weak identification, it is
imperative, as they suggested, to use prior beliefs grounded in economic theory to settle
the debate over small versus large risk aversion.

2.2.2 Economic Theory: Preferences

Back to economic theory, what seems to be immediate relevant is the utility function or risk
attitude upon which the reciprocal relation (2) is built. Consumption asset pricing models
typically assume a power utility function in which the elasticity of intertemporal substi-
tution cannot be disentangled from the coefficient of relative risk aversion. Despite the
use of a power utility function, Hall (1988) still argues that this specification is inappro-
priate because the EIS deals with the willingness of an investor to move consumption
between time periods and is well defined even in the absence of uncertainty. In contrast,
the coefficient of relative risk aversion concerns the willingness of an investor to move
consumption between states of world and is well defined even in a one period model.
Epstein and Zin (1991) has suggested an alternative specification for preference which
can disentangle risk aversion from intertemporal substitution. Specifically, the utility

4Actually, these numbers are provided by Yogo (2004), and are not directly available from Campbell
(2003).



function can be defined recursively as follows:
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for6 = (1 —p)/(1 —1/¢) where  is the elasticity of intertemporal substitution, p and
B, as before, are the coefficient of relative risk aversion and the rate of time preference,
respectively. When 6 = 1, or alternatively when p = 171, this specification reduces to a
time-separable power utility model.

This specification retains many of the attractive features of the power utility function
but is no longer time separable. Nonetheless, in spite of the theoretical appeal of the Epstein-
Zin specification, empirical tests, such as Epstein and Zin (1991) and Smith (1998), have
not been successful in disentangling the elasticity of intertemporal substitution from the
coefficient of relative risk aversion.

2.2.3 Economic Theory: Heterogeneity

In addition to preference, heterogeneity provides another possibility to reflect upon the
puzzle. This is so because one feature common to all the studies which we go through
above is their reliance on the representative-agent assumption. The representative-agent
assumption says that one can treat the aggregate data as the outcome of a single “repre-
sentative” consumer’s decisions. However, as Kirman (1992) has argued, the conditions
on individual preferences necessary for the representative agent to be an exact represen-
tation of the behavior of underlying agents are quite stringent, so much so as to be im-
plausible. Therefore, while the representative agent model is still considered to be useful
for analyzing behavior from aggregate data, recent research tendency does indicate a
gradual movement towards models of heterogeneous agents by abandoning this device. On
the elasticity puzzle, Guvenen (2002) is the one pioneering this direction.

In his analysis, Guvenen shows that the elasticity puzzle arises from ignoring two
kinds of heterogeneity across individuals, namely, heterogeneity in wealth and hetero-
geneity in the EIS. For the first heterogeneity, there is substantial wealth inequality in the
U.S., and 99 percent of all the equity is owned by 30 percent of the population. Obviously,
a large fraction of U.S. households do not participate in stock markets. On the other hand
this group’s contribution to total consumption is much more modest: the top 10 percent
wealthy account for around than 17 percent of aggregate consumption. As to the second
heterogeneity, a variety of microeconomic studies using individual-level data conclude
that an individual’s EIS increases with his wealth.

Putting these two kinds of heterogeneity together, we can conclude that there is a small
group of wealthy households who have significantly higher EIS than the rest, but their
preferences are largely not revealed in aggregate consumption. Instead, aggregate con-
sumption data reveals mainly the low elasticity of the poor who contribute substantially.
Alternatively speaking, the representative-agent assumption implies that the average
consumer and the average investor are the same and thus different macroeconomic time-
series should yield comparable estimates of the EIS. But, the two kinds of heterogeneity
fails the representative-agent assumption by distinguishing the average consumer (the
poor) from the average investor (the rich).



Guvenen (2002) does not attempts to solve the elasticity puzzle as the conflicts be-
tween (3) and (5), because his use of the Epstein-Zin recursive utility function disentan-
gles these two conceptually different aspects of preferences. For example, in his model
p for the poor and rich are assumed to be equal and that they are calibrated to be three,
whereas 1 is 0.1 for the poor and 1 for the rich. This setting is largely motivated by an-
other branch of literature involved in the elasticity puzzle, namely, the real business cycle
model. Therefore, his main concern is to reconcile the difference between the estimated
EIS in the econometric models, such as Hall (1988), Campbell and Mankiw (1989) and
Patterson and Pesaran (1992), and that in the real business cycle model. In other words,
his concern is more about the elasticity itself rather than the puzzle about the two recip-
rocals. Consequently, his models of heterogeneous agents is not directed toward solving
the puzzle, if there is such one.

In this paper, we would like to continue to play with the idea of heterogeneity. As Gu-
venen himself says, “we believe that a view of the macroeconomy based on heterogeneity
across agents in investment opportunity sets and preferences provides a rich description
of the data as well as enabling a better understanding of the determination of aggregate
dynamics (ibid, p. 30),” it is also our conviction that heterogeneity plays a key role in push-
ing forward the frontier of this research area. Our confidence is further strengthened by
a series of empirical studies which deviate from from the device of representative agent,
such as Attanasio, Banks and Tanner (2002), Vissing-Jargensen (2002), Vissing-Jgrgensen
(2003). These studies show the existence of large difference in the EIS between the stock-
holders and non-stockholders. Moreover, using Epstein-Zin recursive utility function,
Vissing-Jargensen (2003) further shows the difference in the risk aversion among groups
of different individuals.

2.2.4 Our Departure : An Agent-Based Computational Thinking

Heterogeneity has already been well incorporated into the asset pricing model for more
than a decade. In literature, it is known as the asset pricing model of interacting heterogeneous
agents. (Brock and Hommes, 1998; Gaunersdorfer, 2000; Lux and Marchesi, 2000; He and
Chiarella, 2001; Chiarella and He, 2002, 2003a,b; Westerhoff, 2003, 2004) However, to our
best knowledge, none of any these studies has been devoted to tackling with the elasticity
issue. There are two main reasons for this. Firstly, many of these heterogeneous models
are not directly comparable to the standard homogeneous consumption CAPM model.
While they also have infinitely lived agents in their models, these agents are assumed to
be myopic in the sense that they only maximize their expected utilities of the next period.
Maximizing lifetime utility is still not typical in this family of models. Second, as a result
of the myopic setting, the utility function only takes wealth explicitly into account, and
consumption is simply absent. Hence, these models are not able to generate time series
of consumption, and are not suitable for the study of the intertemporal elasticity.
Usually, introducing heterogeneity, complex heterogeneity in particular, and the asso-
ciated interaction can severely weaken the analytical tractability of models. This is why
most asset pricing models of interacting heterogeneous agents have difficulties being
considered as the heterogeneous consumption CAPM model. A way to make a break-
through on this is to the make model computational. The agent-based computational asset
pricing models initiated by the Santa Fe research team of economics is indeed a response



to such an analytically daunting task. (Palmer et al., 1994; LeBaron, Arthur, and Palmer,
1999; LeBaron, 2000, 2001; Chen and Yeh, 2001, 2002)

Chen and Huang (2007a) is the first one who extends the conventional homogeneous
consumption CAPM model into its agent-based counterpart. The extension is originally
motivated by another famous debate in finance literature, i.e. the relevance of risk at-
titude to wealth share dynamics (Blume and Easley, 1992; Sandroni, 2000; Blume and
Easley, 2004). They simulate a multi-asset financial market with agents who are hetero-
geneous in risk preference, including CARA, CRRA, and many others. They find that
wealth share dynamics, portfolio dynamics, saving behavior are inextricably interwoven
with populations of risk preferences. Specifically, this model can endogenously generate
a positive relation between the degree of risk aversion and wealth share, a similar result
found in Vissing-Jargensen (2003). Furthermore, an “empirical” efficient frontier is also
generated endogenously, even without the usual Markowitz’s assumption of the linear
mean-variance preference. (Markowitz, 1952; Tobin, 1958) The wealth density along the
efficient frontier is not uniform, a phenomenon that has not been noticed or discussed
either in theoretical or empirical literature.

As a follow-up of Chen and Huang (2007a), this paper shall be the first application of
the asset pricing model of interacting heterogeneous agents to examine the elasticity puzzle.
What is the significance of this doing?

First of all, empirical studies already indicate the necessity of bringing heterogeneity
into consumption capital asset pricing model. It is generally found that different individ-
uals actually may have different elasticities of intertemporal substitution and possibly
different degrees of risk aversion. Therefore, to have a model communicating better with
these “stylized” facts, it is desirable to have a heterogeneous version of consumption
CAPM, and the agent-based computational consumption CAPM has greater flexibility in
dealing with complex heterogeneity.

Second, in addition to heterogeneity, bounded rationality is another important feature
widely shared by agent-based computational economic models. That agents are bound-
edly rational is no longer an peculiar assumption in current economics literature. (Evans
and Honkapohja, 2001) This is particularly so in agent-based computational finance, par-
tially due to the advent of behavioral finance (Chen and Liao, 2004). Models of financial
markets which assumes that mean and variance of the wealth are not known in advance
to agents, but have to be estimated by agents, are prevalent in the literature. Using mi-
crostructure simulation, Adriaens, Donkers and Melenberg (2004) examined the impact
of adaptive behavior to the CAPM model, and conclude “an assumption of rational ex-
pectations which is normally made within the CAPM model does not seem to be justi-
fied... (p. 14).”

As to the consumption CAPM model, the implications of bounded rationality has
rarely been addressed. This is actually a little odd given the fact that all empirical studies
of the EIS are based on the consumption Euler equation, which is derived under the assump-
tions that agents know all conditional means and variances of their portfolio returns, and
hence they are able to solve an infinite-time horizon utility maximization problem. The
guestion arising is certainly not whether these assumptions are true or not. (They are
trivially not.) Instead, it is, to what extent, that the assumptions will do harm for the pre-
diction made based on the Euler equation, such as the EIS and the associated elasticity
puzzle. As a matter of fact, Vissing-Jgrgensen (2003) already found from their Consumer



Expenditure Survey data that the a large number of households did not follow the Euler
equation, and suggested to remove these households from the sample. This is what we
plan to explore in this paper. Specifically, we ask:

¢ If agents are boundedly rational, and we still use consumption and returns data
generated by these boundedly-rational agents to estimate the Euler regression equa-
tion, can we actually uncover the underlying ¢ (or p) of these boundedly rational
agents?

The question posed above asks whether we can recover the true values of i (or p) when
agents are boundedly rational. To tackle with this guestion, one can simulate a consump-
tion CAPM models which are composed of boundedly rational agents with exogenously
given values of ¥ (or p), and then derive the estimated values @ (or p) by applying the
standard econometric procedure to the data generated from the model. By comparing i and
@ (or p and p) in many repetitions, one can then answer whether the standard economet-
ric procedure is able to uncover the true value.®

3 Agent-Based Computational Consumption CAPM Model

Consider a complete securities market. Time is discrete and indexed by t = 0,1,2,...
There are M states of the world indexed by m = 1,2, ..., M, one of which will occur at
each date. States follow a stochastic process. Asset m pays dividends w,, > 0 when
state m occurs, and 0 otherwise. At each date t, the outstanding volume of each asset is
exogenously fixed at one unit, so that the total wealth in the economy at date t, Wy, will
equal to wn, + 221":1 Pm.t, Where pm ¢ is the price of the asset m at time t. The dividends
will be distributed among the investors proportionately according to their owned share
of asset m. The distribution received by each agent i, W;, can be used to consume and
re-invest.

There is a finite number of agents with homogeneous or heterogeneous temporal prefer-
ences in this economy, indexed by i € {1,2,...1}. Each agent i has his subjective beliefs
about the future sequence of the states. Each of these subjective beliefs is characterized
by a probabilistic model, denoted by B'. Since B' may change over time, the time index
t is added as B{ to make such a distinction. The agent’s objective is to maximize his life-
time expected utility, and there are two decisions that are involved in this optimization
problem. First, he has to choose a sequence of saving rates starting from now to infinity,
and second a sequence of portfolios to distribute his saving over M assets. Let us denote
these two sequences of decisions by

{0t )20 {onr )20,

where (5{ is the saving rate at time t, and

TN B i
ay = (“1,tv“2,tv ---v“M,t)

5The simulation study proposed here is very different from the usual empirical study, in which the true
values of ¢ (p) is unknown, and hence there is no basis to gauge the possible bias due to bounded rationality.



is the portfolio comprising the M assets. The two sequences of decisions will be optimal
and are denoted by {6;7,}¢°, and {ay], }2,, if they are the solutions to the following
optimization problem.

max E{ )u'(cl,,) | BI} (8)
ok o (o 120} rga e
subject to
M -
Ctor + ) merr - Otr - Wiirg S WLy, VF >0, 9)
m=1

M _
Z Xmier =1, Apepr >0, Vr>0. (10)
m=1

In Equation (8), u' is agent i’s temporal utility function, and ,B‘, also called the discount
factor, reveals agent i’s time preference. The expectation E( ) is taken with respect to the
most recent belief B{. Equations (9) and (10) are the budget constraints.® By combining
constraint (10), constraint (9) can also be written as (12),

C{+r < (1 - §{+r)wti+rflv (12)

where c} denotes consumption. These budget constraints do not allow agents to consume
or invest by borrowing.

Given the saving rate 5{* agent i will invest a total of 5{* W,/ _, in the M assets ac-
cording to the portfolio a{'*. In other words, the investment put into each asset m is
zxi;;ft . 5{’* . Wtifl. By dividing this investment by the market price of asset m at date t, pm,
one derives the share held by agent i of that asset, g/, ;.

* 1,% i
Q¢ = w, m=12.. M. (13)
' Pm,t

The equilibrium price pm ¢ is determined by equating the demand for asset m to the
supply of asset m, i.e.,

[ IXI’* . 5"* . WI
Tt L g m—1,2,.., M. (14)

1 pm,t

Rearranging Equation (14), one obtains the market equilibrium price of asset m:

i,
pmt—ZlX oYW (15)
®Given agent i’s expected future prices pimﬂ and his wealth Wt'Jrr 1+ Vr > 0, this constraint can also be
written as " "
Ctirst T 2 PmtsrtOmiers1 < Dy (Pmter +Wmtrr)dm e V1 = 0, (11)
m=1 m=1

where qimH is the number of share m held by the agenti at time t +r.
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Agents’ shares of assets will be determined accordingly by Equation (13).” After-
wards, state m happens, and is made known to all agents at date t. The dividends wp,
will be distributed among all stockholders of asset m in proportion to their shares, and
their wealth will be determined accordingly as W{ = Y_M_; (W + Pmy) - db, . The date
moves to t + 1, and the process then repeats itself.

The departure from the conventional consumption CAPM model is the relaxation of
the stringent assumptions: homogeneous and rational expectations. With this relaxation, the
discrete-time stochastic optimization problem defined by Equations (8), (9), and (10) are
no longer analytically solvable.2 Therefore, we assume that all agents in our model are
computational. They cope with the optimization problem with a numerical approximation
method, and the specific numerical method used in this paper is the genetic algorithm. In
this paper, we use the genetic algorithm to evolve both agents’ investment strategies and
beliefs simultaneously. The two-level evolution proceeds as follows:

e At a fixed time horizon, investors update (evolve) their beliefs of the states coming
in the future.

e They then evolve their investment strategies based on their beliefs.

The two-level evolution allows agents to solve a boundedly-rational version of the op-
timization problem (8). First, the cognitive limit of investors and the resultant adaptive
behavior free them from an infinite-horizon stochastic optimization problem, as in Equa-
tion (8). Instead, due to their limited perception of the future, the problem effectively
posed to them is the following:

max (ch,n) | B} (16)
{{5t+h}r|;|:7c)lv{“t+h}r'1_‘;o } h; t+ '

Here, we replace the infinite-horizon perception with a finite-horizon perception of
length H, and the filtration (c-algebra) induced by S;_; with B{, where B{ is investor i’s
belief at date t. In a simple case where m; is independent (but not necessarily stationary),
and this is known to the investor, then Bi can be just the subjective probability function, i.e.,
Bl = (b‘l't, b ¢), where b, ¢ Is investor i’s subjective probability of the occurrence of the

state m in any of the next H periods. In a more general setting, B} can be a high-order
Markov process. With the replacement (16), we assume that investors have only a vague
perception of the future, but will continuously adapt when approaching it. As we shall
see in the second level of evolution, B! is adaptive.

Furthermore, we assume that investors will continuously adapt their investment strate-
gies according to the sliding window shown in Figure 1. At each point in time, the investor
has a perception of a time horizon of length H. All his investment strategies are evaluated
within this reference period. He then makes his decision based on what he considers to

"The realized price pm+ in general is not the same as the expected pim’t. As a result, the ex-post realized
share is not the same as the ex-ante realized share. This can further cause agent’s deviation from the optimiz-
ing behavior. The fundamental cause of this difference is that agents are not able to trade in “equilibrium”
prices. Quite often, they trade in the disequilibrium price unless they have perfect foresight. Also see the
main text below and the associated footnote 8.

8 Spear (1989) shows that for markets composed of complex heterogeneous agents, the rational expecta-
tions equilibria may not even be computable.
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Figure 1. A Sliding-Window Perception of the Investors

be the best strategy While the plan comes out and covers the next H periods only the
first period, {5“*, “1, will be actually implemented. The next period, {(5t+1, tJrl} may
not be implemented because it may no longer be the best plan when the investor receives
the new information and revises his beliefs.

With this sliding-window adaptation scheme, one can have two further simplifications
of the optimization problem (8) — (10). The first one is that the future price of the asset m,
Pm,t+h remains unchanged for each experimentation horizon, namely, at time t,

Pheon = Pme1, ¥ he {0,H—1}, (17)

where p‘m t+h is i’s subjective perception of the h-step-ahead price of asset m. Second, the
investment strategies to be evaluated are also time-invariant under each experimentation
horizon, ie. 6f =&,y = p = .0l y_pandag =ap g =afp = .y g

With these two S|mpI|f|cat|ons we replace the original optlmization problem, (8) —
(10), that is presented to the infinitely-smart investor, with a modified version which is
suitable for a boundedly-rational investor.

max E{ (ct..)| Bl (18)

{{oih{aih hgo (Con) | B

subject to
Ciin + E Wm0t - Wiip_g <Wt+h 1 ¥V he{0H-1}, (19)
m=1

M - .

Yy =L ap > 0,Vm, (20)
m= 1

ct+h—(1 5t) tho ¥V he{0,H-1}. (21)

3.1 Autonomous Agents

One of the mainstays of agent-based computational economics is autonomous agents (Tes-
fatsion, 2001). The idea of autonomous agents was initially presented in Holland and
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Miller (1991). Briefly, these agents are able to learn and to adapt to the changing envi-
ronment without too much external intervention, say, from the model designer. Their
behavior is very much endogenously determined by the environment with which they
are interacting. Accordingly, sometimes it can be very difficult to trace and to predict,
and is known as emergent behavior.

In this paper, we follow what was initiated in Holland and Miller (1991), and equip
our agents with the genetic algorithm to cope with the finite-horizon stochastic dynamic
optimization problem, (18) — (21). The GA is applied here at two different levels, a high
level (learning level) and a low level (optimization level). First, at the high level, it is ap-
plied as a belief-updating scheme. This is about the B! appearing in (18). Agents start with
some initial beliefs of state uncertainty, which are basically characterized by parametric
models, say, Markov processes. However, agents do not necessarily confine themselves
to just stationary Markov processes. Actually, they can never be sure whether the un-
derlying process will change over time. So, they stay alert to that possibility, and keep
on trying different Markov processes with different time frames (time horizons). Specif-
ically, each belief can be described as “a kth order Markov process that appeared over
the last d days and may continue.” These two parameters can be represented by a binary
string, and a canonical GA is applied to evolve a population of these two parameters
with a set of standard genetic operators. Details are given in Section Appendix B.

Once the belief is determined, the low-level GA is applied to solve the stochastic dy-
namic optimization problem defined in (18) — (21). Basically, we use Monte Carlo simula-
tion to generate many possible ensembles consistent with the given belief and use them
to evaluate a population of investment plans composed of a saving rate and a portfolio.
GA is then applied to evolve this population of candidates. Details are given in Section
Appendix A.

In sum, the high-level GA finds an appropriate belief, and under that belief the low-
level GA searches for the best decisions in relation to savings and portfolios. This style
of adaptive design combines learning how to forecast with learning how to optimize, a dis-
tinction made in Bullard and Duffy (1999). These two levels of GA do not repeat with
the same frequency. As a matter of fact, the belief-updating scheme is somewhat slow,
whereas the numerical optimization scheme is more frequent. Intuitively, changing our
belief of the meta-level of the world tends to be slower and less frequent than just fine-
tuning or updating some parameters associated with a given structure. In this sense, the
idea of incremental learning is also applied to our design of autonomous agents.

3.2 Summary

Figure 2 is a summary of the agent-based artificial stock market.

4 Experimental Designs and Data Generating Processes

4.1 Experimental Designs

Two series of experiments are conducted in this paper. Each design can be summarized
by a design table, such as Table 1, which characterizes Experiment 1. Each experimental
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Figure 2: A Summary of Agent-Based Artificial Stock Markets

design may differ in only few parameter values, and share the same for the rest. There-
fore, we can use Table 1 to state the common structure of the two experiments. The
parameters used to control the experiments can be classified into two categories. Param-
eters of the top half of Table 1 correspond to the market and its participants, whereas
those of the bottom half pertain to the adaptive scheme (i.e. genetic algorithms) associ-
ated with the autonomous agents.

To examine the influence of bounded rationality on the observed elasticity, in the first
experiment, we distinguish agents by their forecasting accuracy. As what has been shown
in Chen and Huang (2007a), this can be done by endowing agents with different valida-
tion horizon (v).° Chen and Huang (2007a) has shown that a longer validation hori-
zon implies higher forecasting accuracy, and, other things being equal, a higher wealth
share. In the first experiment, we consider agents with three different values of v, namely,
v = 25,50, 100. These three types of agents are evenly distributed among a market of 30
participants; so there are 10 agents associated with each v (See Table 1).

Agents in the first experiment share the same utility function, i.e., the log utility func-
tion, which implies p= ¢ =1 (Table 1). The purpose of the first experiment is to examine

9See Appendix B.2 for the discussion of this parameter. Also see Equation (42) and Figure 7.
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Table 1. Experimental Design

Market and Participants
Number of market participants (1) 30
Number of types of agents 3 (5
Number of each type of agent 10 (6)
Number of assets (states) (M) 5
Dividends paid by asset m 6-m
Stochastic processes iid or first-order Markov
Number of market periods (T) 100
Type of the utility function Power Function
Discount rate (B) 0.45
Coefficient of relative risk aversion (p) 1 (05,1,2,3,4,5)
Elasticity of Intertemporal Substitution (y) 1

Autonomous Agents

Agents’ perception of the time horizon (H) 25
Number of ensembles (L) 5
Population size (number of strategies) (N) 100
Number of generations (G) 50
Validation horizon (v) 25, 50, 100 (100)
Population size (number of beliefs) (J) 100
Frequency of running GA on the belief set (A) 2
Number of bits for beliefs (71 + ) 10

Experiment | and Experiment Il share the values for most parameters. For those they don’t, we put the
values used in Experiment | outside the bracket, whereas leave the values used in Experiment 2 inside the
bracket.

whether we can discover these coefficients by using the standard econometric procedures
with the artificial data on consumption and returns.

The second experiment assumes agents to share the same perception parameter (val-
idation horizon), while differs them by risk preferences. Motivated by Chen and Huang
(2007b), we vary the value of p from 0.5, 1, 2,..., to 5, as shown in Table 1. As shown in
Chen and Huang (2007b), risk aversion contributes to the wealth share in a positive way:
the higher the coefficient p, the higher the wealth share. The purpose of this experimen-
tal design is then to see whether we are able to discover the true value for each of the six
values of p or their reciprocals (is).

For each design of the two experiments, 100 runs are conducted, and each last for 100
periods. For the 50 out of these 100 runs, we employ iid as the state-generation mecha-
nism, whereas, for the other 50 runs, the first-order Markov process is used.

4.2 Data Generated

Based on the theoretical model presented in Section 3, the simulation counterpart can
generate a number of time series observations, including individual behavior and aggre-
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gate outcomes. Since these variables will be then be used in the econometric analysis for
the later stage, we shall first briefly summarize them here.

Let start with individual profiles. The individual behavior as described by Equations
(8) to (13), and with the modifications (18) to (21), covers the following time series of
individual profiles.

e {ci}, (i =1,2,..,1): individual consumption

e {41}, (i =1,2,.., 1) individual saving rate

° {“Lw,t}v (m=1,2,..,M,andi=1,2,.., ) individual portfolio

° {q|ifn,t}' (m=12..,M,andi=1,2,..1): individual holding share of each asset
e Time series of aggregate consumption ({c})

e Time series of asset price ({pmt},m =1,2,..., M)

5 Econometric Analysis of the Simulation Results

5.1 Experimentl
5.1.1 Estimation Using the Individual Data

The main econometric equation or the system of equations which we shall built upon to
estimate the parameter of EIS is mainly based on Hall (1988).10
Ack =7 +y'rt  +8 (i=12..,1), (22)
where )
. c!
Acy = log(=+). (23)
c
t-1
Notice that the heterogeneity of individuals in terms of the elasticity of intertemporal
substitution makes Equation (22) also heterogeneous among agents. Therefore, all esti-
mated coefficients, such as T and ¢, are heterogeneous among agents as they are denoted
by 7' and ¢'. Furthermore, the heterogeneity in terms of investment behavior also make
rates of return r; facing agents also heterogeneous, which are denoted by r} in Equation
(22).
The return facing each individual is determined by their chosen portfolio «, and can
be calculated as follows.

ri = log(R}) (24)
where
R't = Z oc,'mRm,t, (25)
m=1
and N
Rt = Fmt T Wmt (26)
Pm,t

10The derivation of the Euler consumption equation is briefly reviewed in Appendix C.

16



Equation (26) gives the rate of return of the asset m, and Equation (25) is the rate of
return of the portfolio a{.“ Following the derivation of the Euler consumption equation
(see Appendix C), we do not use the rate of return (R}) but the logarithm of it (r}) as the
dependent variable.

To estimation coefficients ¢;, one may start with Equation (22), and estimate each of
the 30 equations individually. Alternatively, one may consider the set of 30 individual
equations as one giant equation, and estimate the 30 ;s altogether. The latter approach is
the familiar seemingly unrelated regression estimation (SURE). SURE can be useful when
the error terms (git) of each equation in (22) are related. In this case, the shock affecting the
consumption of one agent may spill over and affect the consumption of the other agents.
In this case, estimating these equations as a set, using a single large equation, should
improve efficiency. In this paper, we do find the error terms among different agents are
correlated; therefore, SURE is applied. To do so, we rewrite the set of equations (22) into
a single equation as (27).

Ac=T+r¥+& (27)
where
! Act rr 0o .. 0 ! gt
T2 Ac? 0 r .. 0 2 2
r = . !AC — . 1 r= . . . !T - l/) IE‘ - 5
Téo A(;3° 0 0 (30 1p.3° géo

Here, we remove the subscript t, so each Act, riand §i are column vectors, which presents,
respectively, the dependent, independent observations and error terms at each period t
(t=1,2,..., T). The ordinal least square (OLS) can not be directly applied to Equation (27)
because, as we mentioned earlier, consumption residuals (Z}) among different agents are
correlated. Furthermore, based on the White test, evidence of heteroskedasticity is also
found in each of the equations (22). These evidence together indicate that one should use
the generalized least squares (GLS) rather than OLS to estimate Equation (27).

The GLS estimation of the vector ¥ is given in Table 2. The estimate ¥ contains the
elasticity of the intertemporal substitution of 30 agents, who, under Experiment 1, differ
only in the parameter validation horizon (v). In Table 2, we cluster the agents with the
same validation horizon together, and number them accordingly. So, we number one two
ten for the agents with the longest validation horizon (v = 100), eleven to twenty for the
agents with middle validation horizon (v = 50), and twenty one to thirty for the agents
with shortest validation horizon (v = 25).

While the true value of ¢' is identically one for all agents, the estimated counterpart
is numerically different among agents. It ranges from a minimum of 0.326 (Agent 20) to
a maximum of 0.405 (Agent 5). This range is also very much below than one, and the
average 0.374 is just about one-third of the true value. As a result, we fail to discover the
agents’ true preference of intertemporal substitution; instead, it is dramatically underes-
timated, which means, on the other hand, if we take the reciprocal of it as the estimate of
the coefficient of risk aversion, then obviously, it is overestimated.

11The rate of return defined here (26) is not conventional. Appendix C discusses the reason of using this
one. See also footnote (16).

17



Table 2: The Estimated Elasticity of Intertemporal Substitution, Individuals

v =100 v =250 v=25

Agents ' Agents ' Agents '

1 0.382 | 11 0351 | 21 0.381
2 0.359 | 12 0.367 | 22 0.359
3 0.391 | 13 0.378 | 23 0.377
4 0.398 | 14 0375 | 24 0.387
5 0.405 | 15 0.375 | 25 0.368
6 0.392 | 16 0.338 | 26 0.388
7 0.400 | 17 0.366 | 27 0.368
8 0.374 | 18 0.400 | 28 0.349
9 0.385 | 19 0.380 | 29 0.327
10 0.381 | 20 0.326 | 30 0.394

To give a further examination of the estimated EIS (') among agents with different
perception (v), Figure 3 depicts the box-whisker plot of the 1/3‘ of each group. It can be
seen that agents with the long validation horizon (v = 100) tends to have a higher value
of 1/3‘, while the distribution associated with the medium horizon (v = 50) and the short
horizon (v = 25) is almost the same.

At this stage, it is still too early to infer whether our simulation results can shed light
on the empirical evidence on the heterogeneity in either the risk aversions or the intertem-
poral substitution, as we have seen in Section 2.2.3. However, it does question whether
the observed heterogeneity, either in ¢ or p, is just spurious, that including the empir-
ically positive relation between ¢ and wealth. Having said that, we shall compare the
estimated ¢' of the “rich” people and that of the “poor” people by using our simulation
results.

Figure 3 shows the wealth share of the three groups of agents. As Chen and Huang
(2007a) already showed, the agents with a long validation horizon tends to have a higher
wealth share than those with a short one, which is consistent with what we have here.
In our Experiment 1, the richest group of agents (agents with v = 100) owns 0.7% more
in share than the poorest group of agents (agents with v = 25), and the “middle class”
(agents with v = 50) owns 0.4% less than the richest ones, but 0.3% more than the poorest
ones. These differences are numerically slight, but are statistically significant. Combin-
ing this result with that of Figure 3, we find that the richest group of agents is also the
one with the highest 1/3 However, from our setting, these agents, be they eventually poor
or rich, share the same EIS, which is one. As a result, the observed heterogeneity may be
spurious. Alternatively speaking, in our agent-based simulation, both the wealth share
and the observed relation between consumption and the return are endgeneously gen-
erated. Agents with a better forecasting accuracy may be able to behave closer to the
optimizing behavior (Euler consumption equation); hence, they are not only richer but
their observed EIS, ¢, is also closer to the true value.
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Figure 3: The Estimated EIS (1/3‘) of Agents with Different Perception (Validation Hori-
zons)

5.1.2 Estimation Using the Aggregate Data

As we survey in Section 2.1, the early econometric work on the estimation of the elasticity
of intertemporal substitution mainly used only the aggregate data. The result which we
have in the previous section (Section 5.1.1), however, use the individual data instead.
Therefore, to conduct experiments in parallel to the early work and to examine the effect
of aggregation upon the estimation of the EIS, in this section, we also estimate the EIS
based on the aggregate data.

The data generated by the agent-based simulation is flexible enough to allow for dif-
ferent levels of aggregation. We consider two different levels of aggregation. At the first
level, we employ the device of the representative agent for each group of agents, i.e.,
agents with the same validation horizon. We then derive the consumption and return
data for this representative agent, and estimate the Euler consumption Equation based
on the derived (aggregated) data. At the second level, we then consider the whole econ-
omy as a unit, and repeat the same thing above with the device of the single represent
agent. This will lead to the two following modifications of Equation (27), namely, Equa-
tions (28) and (31).

Ac=T+r¥+E2 (28)
where
Tt Act k0 0 e e
Ir=|[t™M|,Ac=[aM|,r=[0 ™ o| ¥=[yM|.E=[EM],
75 AcS 0 0 r° S S
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Figure 4. Wealth Share of the Three Groups of Agents

and

yid c ¥, Y2
Act = log(Z5=="1), Act! = log(S5=25), Acg = log(5-2-), (29)
221Gt g i=11 Ct_1 i—21 Ct_1
10 pi 20 pi 30 pi
~. R ‘ R : R
L i=1 Rty M _ i=11 Rty s _ i—21 Rt
r- = Iog(i10 ), T Iog(i10 ), r Iog(i10 ) (30)

Equation (28) is the Euler consumption equation with the assumption of treating each
group of individuals as a single representative agent. Equation (29) is the growth rate
of the group consumption, and the group consumption is simply defined as the sum
of the individual consumption. Equation (30) is the logarithm of the return facing each
representative agent, and this return is defined as the simple average of the returns facing
each individuals of the group. The superscripts L, M, and S refer to the long, medium
and short validation horizons. As what we did in Equation (27), the subscript t is not
shown here, since each of the three-group components in Ac, r and = are considered as
column vectors composed of time series observations.

Likewise, Equation (31) is the Euler consumption equation with the assumption of
treating the whole economy as a single representative agent. This version is the one fre-
quently used in macroeconometrics. Equations (32) and (33) are the further aggregation
in parallel with Equations (29) and (30).

ACt =T+ 1/th_1 + gt, (31)
where 0
Yie1 Gt
Acy = log(Si=-1), (32)
¥ Ct 1
and .
1R 33
re = IOQ(T)' (33)
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Table 3: The Estimated Elasticity of Intertemporal Substitution, Groups

Aggregation Level I:  Equation (28)

Parameter Estimate StdErr tValue Pr>|t| R?

Pt 0.05427 0.0017 31.99  <.0001 0.0925
@M 0.05388 0.0017 3131 <.0001 0.0895
S 0.02829 0.0011 2507  <.0001 0.0013
Aggregation Level Il:  Equation (31)

Parameter Estimate StdErr tValue Pr>|t| R?

P 0.08678 0.0024 3506  <.0001 0.1115

SURE with GLS is then applied to the aggregate Euler consumption equation (28),
whereas GLS alone is applied to Equation (31). The estimation results are presented in
Table 3. The estimated EIS of the three groups of agents, ¢“, ¢™, and ¢, are given in the
upper panel of Table 3, whereas the economy-wide counterpart, @ are given in the lower
panel. These estimates are in a sharp contrast to the those estimates based on individual
data (see Table 2). In Table 2, we have seen that the EIS has been underestimated, and the
estimate is about one-third of the true value. However, here it is further underestimated
and is even less than one-tenth of the true value.

Among the three groups of agents, agents with better forecasting accuracy (longer
validation horizons) are still found to be ones with higher estimated EIS: ¢~ > ¢M >
1/33. In particular, for the agents with short validation horizon, the estimated EIS is only
0.028, and the respective R? is barely above zero. Therefore, the general findings of using
individual data sustains, namely, the observed heterogeneity in the EIS is spurious. So is
the observed positive relation between wealth share and the EIS.

One interesting question frequently asked in the agent-based modeling is: what is the
relation between micro and macro. By comparing the 1/3 from the aggregate data (Table
3) and the zﬁ‘ of the individual data (Table 2), one may find that the representative agent
of the whole economy constructed using the aggregate data does not well represent the
distribution of individuals. An ¢ of 0.086 is far below the entire the distribution of ¢'s,
not to mention being the mean or median of it.

5.2 Experiment 2

5.2.1 Estimation Using the Individual Data

The second experiment assumes agents to differ in risk preference. While all of them
have the CRRA-type risk preference, their ps are different and range from 0.5, 1, 2,..., to
5. Five agents correspond to each of the six values of p. We number these agents from 1
to 30 by the value of p as shown in Table 4. As before (27), SURE is applied to estimate
the intertemporal elasticity of each agent, and the results are given in Table 4.
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Table 4. The Estimated Elasticity of Intertemporal Substitution (Experiment 2), Individu-
als

p=05y=2 | p=2p=05 | p=4,9p =025
Agents ¢ Agents ¢ Agents ¢

1 0241 | 11 0.290 | 21 0.321
2 0.245 | 12 0.295 | 22 0.326
3 0.242 | 13 0.300 | 23 0.327
4 0.245 | 14 0.298 | 24 0.326
5 0.230 | 15 0.302 | 25 0.322

APE 0879 | APE 0405 | APE  0.299

p=1y=1 |p=3yp=03 |p=5yp=02
Agents ¢ Agents ¢ Agents ¢

6 0.250 | 16 0.317 | 26 0.319
7 0.249 | 17 0.322 | 27 0.318
8 0.246 | 18 0.319 | 28 0.319
9 0.249 | 19 0.322 | 29 0.322
10 0.247 | 20 0.318 | 30 0.317

APE 0.751 | APE 0.030 | APE 0.597

Table 4 presents the estimated elasticity of the six groups of agents; each is associated
with different p (). Since the utility function is the CRRA type, the true ¢ is just the
reciprocal of the corresponding p. In Table 4, we also list the value of the ¢ in parallel.
This makes us easier to compare ' with ',

From Table 4, a few observations can be made. Firstly, while s vary from 0.2 to 2,
their estimated counterparts distribute within a much narrower range, namely, around
0.25 to 0.3. With this range, most of the estimated s miss their true values. The ¢ of
less risk-averse agents are underestimated, whereas the ¢ of more risk-averse agents are
overestimated. To see this, the average percentage error (APE) of each ¢ are also given in
Table 4. It is clear that, starting from the less risk-averse agents (p=0.5), the APR starts to
decline, and further down to the minimum when p approaches 3. It then increases again
when p is away from 0.3. Second, associated with this APE pattern, there is a positive
relation between the ¢' and p. If the positive relation between the wealth share and p
still exists as in Chen and Huang (2007b), then we have found again a positive observed
relation between wealth share and estimated intertemporal elasticity.

5.2.2 Estimation Using the Aggregate Data

In vein of Section 5.1.2, we also examine an aggregate version of the Euler consumption
equation, which in structure is very similar to Equation (31). Due to the very usual econo-
metric consideration, generalized method of moment is applied to estimate the aggregate
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Table 5: The Estimated Elasticity of Intertemporal Substitution, Groups

Parameter Estimate StdErr tValue Pr> |t R?

0 0.0072 0.0005 14.04 <.0001 0.0138

Euler consumption equation, and the result is shown is Table 5. By comparing this result
with the previous one (Table 5). One can see the sharp decline of the estimated intertem-
poral elasticity. Remember that we have agents with elasticities from 0.2 to 2; however,
the estimated elasticity is almost nil, while still significantly different from zero. There-
fore, the representative agent does not represent the society at all: it is not the centroid
(average) of them.

Also, by comparing this result with the that from the earlier aggregate Euler consump-
tion equation (Table 3), one may gauge the possible implication of the degree of hetero-
geneity on the estimated elasticity. In the early case (Experiment 1) all agents share the
same degree of risk aversion, and now they are divided into six groups of risk aversions.
The 1/3 decreases from the early 0.0867 to now only 0.0072, and R? also drops from the
original 11.15% to now only 1.38%. Therefore, by using aggregate data, the intertempo-
ral elasticity may be further underestimated when agents’ risk preference are heteroge-
neous.*?

6 Concluding Remarks

One of the main attractions of using the agent-based model is its capability to demon-
strate the so called micro-macro relation. Sometimes, it may not be easy to track, step by
step, from the bottom (micro interactions) to the top (macro outcomes), and hence one
may not be able to have a full grasp of the causes and the consequences. Nevertheless,
it does allow us to gauge how serious a misleading conclusion one may draw when the
analysis is entirely based on the aggregate outcomes. In this paper, an illustration based
on the famous elasticity puzzle is demonstrated.

Our results based on the agent-based simulation show that the puzzle may come from
our ignorance of a fundamental issue: can we use econometrics to discover the individuals’
profiles while they are boundedly rational and are placed in an interacting and evolving environ-
ment. Both of the two experiments show that the intertemporal elasticity of individuals
are underestimated, and the degree of underestimation is even severe when only aggre-
gate data is used. Furthermore, we also find that agents who have better forecasting
capability and hence wealthier tend to have a higher “observable” intertemporal elas-
ticity than those with less forecasting accuracy, even though they both share the same
intertemporal elasticity. Therefore, the observed positive relation between wealth share
and the intertemporal elasticity can be spurious.

There are a number of points which are open for further research. First of all, the
robustness of some of the results observed in this paper should be further examined by

120f course, how far or how general that we can extend the finding here requires more work.
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using different econometric procedures. In this paper, we do not use OLS because of the
econometric reason. However, we have found that if one uses OLS, the already under-
estimated intertemporal elasticity (found in Experiment 1) can be even biased away, and
the results can nicely match many empirical results, such as Hall (1988) and Campbell
(2003).

Second, the independent variable, return, only considers dividends. The capital gain
is not included for the reason that given in the appendix. However, it is still interesting
to see the results by “blindly” trying the version with capital gains. Third, all individual
knows their own returns, while this personal data is not easy to get in empirical study.
So, itwould be also interesting to see the relation between consumption and return, when
the latter is defined by only the observable market data.

Appendix A Evolution at the Low Level: Investment Strategies

Appendix A.1 Coding and Initialization

The implementation of the genetic algorithm starts with a representation (coding) of so-
lutions. Here, we employ the real coding. The saving rate (4}) and the portfolio («}) are
coded as real-valued numbers: {5} | &} &, ...}, }. To solve (18), an initial popula-
tion of investment strategies with population size N is first generated for each investor i,
GEN!, = {6{,(0), &} ,(0)}N_,. The number inside the parentheses refers to the generation
number in the GA cycle. Population GENti’0 is generated as follows:

e 6! ,(0) is randomly generated from the uniform distribution U (0, 1).

e To generate a portfolio Dciyn(O), a set of numbers (Q1, Qz, ..., Qm) are randomly gen-
erated from U(0, 1). Then, to make sure that their sum is equal to 1, they are rescaled

as follows:
Q1 Q2 Qm

(Zg/lﬂ Qq’ Zc']\il Qq’ o Zc']\il Qq

). (34)

Appendix A.2 Fitness Evaluation: Eval { GENti,g }

Corresponding to (18), the fitness measure f is simply the H-horizon discounted expected
utility:

- - H71 - . - -
fe(n, 9) = f(dtn(9), atn(9) = E{hz (BY)"u' (et.n) | Bi, (35)
=0

where fi(n, g) refers to the fitness of the nth investment strategy in the population GENt‘Yg
(i.e. the gth generation of the GA cycle). The Monte Carlo simulation technique is used
to evaluate the fitness (35). The way to do so is to simulate a certain number, say L, of
H-horizon histories of the states based on investor i’s belief, B{. For each simulated history
I (I € [1,L]), we can obtain a realization of (35), i.e.

H-1

Y (Bl | D, 1=1,2,..L.

h=0
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Then, we estimate f¢(n, g) by taking the sample average,

L H=1/aiyhpji/ai
fi(n,g) — Zi=tEn=0 (ﬁL) U 1D (36)

Appendix A3 Genetic Operation: GEN{, — GENt‘Yg+1

Once the procedure Eval { GEN{gl } is completed, all investment strategies are associated
with a fitness which is the output of (36).

Eval : {0(9),atn(9)nis — {fe(n 90y (37)

Based on their fitness, we shall revise and renew these investment strategies based
on investor i’s belief Bl. This revision and renewal procedure involves the use of four
standard genetic operators, namely, selection, crossover, mutation and election.

Selection: The tournament selection with tournament size 4 is employed. For each se-
lection, four investment strategies are randomly selected from GENt"g. Of them, the best
two will be chosen as the parents (mating pool). We denote them by I, = {5{’X(g), oc‘t'x(g)},
and Iy = {5{’y(g),oc‘t'y(g)}, where x,y € [1,N].

Crossover: With probability pcross (crossover rate), the two parents chosen above will
generate an offspring by taking a weighted average of the two investment strategies, and
the weights will be determined by the relative fitness of the two strategies.

l, = (5{,2(9%“{,2(9)) (38)

ft(x’ g) i i ft(yi g) i i
ft(X! g) n ft(y, g) (5t,x(g>a (Xt,x(g» ft(X, g) n ft(y, g) (5t,y(g>a at,y(g»

Mutation: The offspring I, will then have a small probability (mutation rate) to mutate.
If mutation happens, it will proceed as follows. For the saving rate, a number randomly
selected from the U[0, 1] will be used to replace 6{Y2(g). For the portfolio, a set of num-
bers, € = (e1, €2, ...,em), randomly generated from U(0, 1), will replace ’Xit,z(g>' Then the
rescaling technique described in (34) will be applied. We call the resultant strategy I

Election: The use of the election operator examines whether the new investment strat-
egy is expected to perform better than the one it replaced. In election, we shall use (36) to
evaluate the potential fitness of I/, and compare it with the fitness of the two parents, I
and ly. Then, only the one with the highest fitness will be retained for the next generation,

GEN{ ;.

Appendix A.4 Loops

Once a new investment strategy is generated, a loop leads us back to selection, which
is then followed by crossover, mutation and election and then the next new investment
strategy is generated. The loop will continue until all N strategies of GENti,g+1 are gener-
ated. GENti'g+1 will be evaluated based on the Eval procedure, and based on the evalua-
tion, genetic operators will be applied to GENti,g+1 to generate GENt"gH. This loop will
also be repeated over and over again until a termination criterion is met, e.g., when g

reaches a prespecified number G.
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Figure 5. Flowchart of the Low-Level GA

When the renewal and revision process is over, the investor will select the best strategy
from the last population of investment strategies, say;, GENt"G.

(0", ad) = g max (1, G @
GEN{

t,G

Appendix B Evolution at the High Level: Beliefs

At the low level of evolution, the investor revises and renews his investment strategies
with respect to a specific belief selected from a population of beliefs {B},t}le- In other
words, at each point in time, the investor may have more than one model of uncertainty
in the world. The idea that each agent can simultaneously have several different models
of the world, which are competing with each other in a co-evolving process, is a distin-
guishing feature of the population learning models (Holland and Miller, 1991; Arthur et. al.,
1997; Vriend, 2000; Chen and Yeh, 2001; Arifovic and Maschek, 2003). Of course, these
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models are not equally promising, and the investor tends to base his decision (investment
strategies) on one of the most promising ones. However, as times goes on, his beliefs of
the world will be revised and renewed in light of the newly incoming information. In this
section, we shall describe how genetic algorithms can be applied to modeling the beliefs
updating process.

Appendix B.1 Coding and Initialization

In our agent-based comsumption CAPM, each investor’s perception of the uncertainty
(finite-state stochastic process) of the market can be characterized by two elements: first,
the dependence structure (k), and, second, the sample size (d). Based on this characterization,
the investor believes that the market over the last d days follows a kth-order Markov
process. According to this belief, he would use a part of the historical data {mt_s}‘s’j\‘,’ﬁ,
referred as to the training period, to estimate the Markov transition matrix, and the rest
of the data {m¢_s}?_,, referred to as the validation period, to validate the estimated model.
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Figure 7: The Belief Updating Scheme

As a result, each belief can be represented by a binary string, of length 71 + 1,

a182..a ap418n+2--8n4, 8 €{0,1}, V1<i<m+n
h\,_/
T1bits Thits

that has the following interpretation: the states follow a Markov process of the order

[

k = (Z 217 'qy) (40)
i=1
over the last
1+ .
d=( ) 2% % 'a)+c (41)
i=m+1

days. To facilitate estimation, d cannot be too small, and that demands an additional
constant of ¢. In our current model, we simplify and limit the dependent structure (k) to 0
or 1, that is, we only assume the stochastic process to be iid or first-order Markov.

At the initial date (t = 0), all investors are endowed with a population of J beliefs,
which are randomly generated. Then every A days, this population of belief will be
reviewed and revised based on the fitness function, which is a kind of likelihood function
to be specified below.

Appendix B.2 Belief Updating Scheme

Agents in our model follow the practice of machine learning. They are supposed to care
about the risk of over-fitting, and hence use data in the validation period to perform
model selection. One way of ensuring that our agents behave so is to set the fitness
function as the fitting error in the validation set, rather than the training set. The belief
updating scheme is outlined in Figure 7.

The essence of the belief updating scheme is to maintain a style of on-line learning,
while not to overload the computational intensity. As we can see from this figure, at
each time t agents retain the most recent v days as the validation period. They use the
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data before the validation period, that is, the data of the training period, to estimate the
parameters of each belief. Then a fitness measure for a belief B},t is its associated likelihood,

evaluated by the validation set {m¢_s}{_,,

LJi',t = L({mts}s_y | B},t)- (42)

Equation (42) is the likelihood of the observations {m¢_s}Y_; in the validation period
under the belief B},t- Every A periods, after they finish the evaluation of each belief’s
fitness, they apply the genetic operation to update their belief set (see Section Appendix
B.3), and the belief with the highest fitness will be chosen. Even in the period that the
genetic operation is not applied, say whent € [A + 1, 2A — 1], they evaluate the fitness of
beliefs in their current belief set using the newest data and choose the best from it.

Appendix B.3 Genetic Operation

Once the procedure of evaluating each belief’s fitness (Eval {B}’tfl}le) is completed, all
beliefs are associated with a fitness which is the output of (42).

Ri J i J

Based on this fitness evaluation, we will revise and renew investor i’s beliefs by using the
following four genetic operators: selection, crossover, mutation and election.

Selection: A tournament selection with tournament size 4 is adopted. The best two
beliefs will be chosen as the parents (mating pool).

Crossover: With probability peress, the two parents chosen above will generate an off-
spring by the uniform crossover. With this crossover, each bit position of the offspring
will be taken randomly either from the father or the mother with a one-half chance for
each. For an illustration, let us consider the pair of parents to be B}, ; = 0010101010,
corresponding to a belief of (ky,dx) = (0,170), and B;,t—l = 0111110010, corresponding

to (ky,dy) = (0,498). Then, an offspring, Biz, can be
BiZ = 0011100010 — (k;,d;) = (0,226).

Mutation: There is a small probability pmutate (Mutation rate) by which each bit of B!
may encounter a change. For example, the mutation which changes the fifth bit from “1”
to “0”, and the last bit from “0” to “1” will result in a new string:

B!, = 0011000011 — (ky,d) = (0, 195).

Election: Finally, B!, will also be evaluated by the observations {mt—s}s_y, and the
likelihood will be figured out. We will then compare the likelihood from B!, with the
likelihood from the parent models, and the best one will be passed to the next generation,

i Y
{Bj!,t}jzl'
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Appendix B.4 Loops

Once a belief is generated, a loop in Figure 8 will lead us back to selection, which is then
followed by crossover, mutation and election before the next belief is generated. The loop

will continue until all J beliefs of {B}’t}f:1 are generated. One of the beliefs, Bj'f will be
chosen based on the likelihood criteria,
By = argmaxL({me-s}iy | Bjy) (44)

The belief set will remain unchanged for the next A periods, when another loop of revi-
sion and renewal process is conducted, and By}, is brought about.

Appendix C Euler Consumption Equation

The data generated from the agent-based computational consumption CAPM model is
then used to fit the Euler consumption equation, which is derived from the assumption
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of homogeneous agents under rational expectations.'®> Below we shall follow Hansen
and Singleton (1983) to re-derive this equation to fit our specific context.

Consider the representative consumer with a CRRA (constant relative risk aversion)
utility function:1®

u(ee) =c¢t */1—p, p>0. (45)

The representative consumer in this economy is assumed to choose a consumption plan
so as to maximize the expected value of his time-additive utility function,

E[Y. fu(eear) | O, 0< f< 1. (46)

The mathematical expectation E(- |) is conditioned on information available to agents at
time t, Q¢. Current and past values of real consumption and asset returns are assumed to
be included in Q).

Agents substitute present for future consumption by trading the ownership rights of
M assets. As above, the vector §; denotes the holdings of the M assets at the date t, ¢
denotes the vector of prices of the M assets, and W denote the vector of M values of the
dividends at date t. Then agents’ consumption and investment plan (c¢, q;) maximize (46)
subject to the sequence of budget constraints,

Cty1+ Prot - Trrg < (P + W) - . (47)

The first-order necessary conditions, that involve the equilibrium price of the M assets,
are
U/(Ct) = ’B . E{U/(Ct+1) | Qt] . Rm,t; m=1,.. M, (48)

where Ryt = — PmtFWmt s the return on the mth asset expressed in units of the consumption

good. Pt

The definition of asset returns here is different from the usual derivation. This is be-
cause we have a different time line for agents. Due to computational hardness for the
fix point, our temporal equilibrium is not Walrasian. Agents submit their orders based
on their estimated price p‘m, which in general is different from the realized temporal
equilibrium price pmt. In other words, the equilibrium prices only happen after their
submission. By this time line, when they are making the decision for the period t + 1 the
effective return is actually the Ry, + defined above.

13There is also an assumption about the joint distribution of consumption and returns. We shall be back
to this issue later.

14The Hall (1988)’s derivation is similar, and, therefore, is skipped.

15The CRRA utility function is what we need here. In fact, our agent-based simulation is further restricted
to the case where p =1, i.e., the log utility function. See Table 1.

16 1n fact, an alternative measure which can capture the capital gain is

Pmt+Wmt  Pmt+Wmt

Rmt =
p:n’t pm,t—l

The second equality is based on the random-walk assumption, Equation (17). This discussion of different
measure of returns points out the relevance of trading mechanisms. Is it traded with continuous double auction,
or traded with Walrasian auctioneer, or traded with a rationing scheme? Obviously, empirical literature may not
be interested in this distinction because the consumption Euler equation is only applied to the low-frequency
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Substituting (45) to (49) and rearranging gives

E[ﬁ(CtC—J:l)fp ‘Rmt | Q) =1; m=1,.., M, (49)

Assuming the joint distribution of consumption and returns is lognormal, from (49), a
restricted linear time-series representation of the logarithms of consumption and asset
returns can be derived. Let

Xt = C/Ct-1, Umt = X "Rmt-1.
Then (49) can be rewritten as
E(Unt| Q¢1) =1/, m=1,..M. (50)
Next, let
Acy = 109X, I'mt = logRmt,
Ye = (ACt M1, Mit-1),
Unt = 10gUnt = —pACt + Imi—1 (M=1,..., M),

and Qf_l denote information set {Y;_s : s > 1}. Further, assume that Y; is stationary
Gaussian process. This distributional assumption implies that the distribution of up
conditional on Qf_l is normal with a constant variance ¢ and a mean Hmt—1 that is a
linear function of past observation on Y;.

Hence,

E(Umt | Qf ;) = E(explum]) = explpmi—1 + (65/2)], m=1,..M. (51)

Since Qf_l C O¢_1, we can take expectations of both side of (50) conditional on Q¥_1 to
obtain
E(Um:t | QY ;) = 1/B. (52)

Equating the right-hand sides of equation (51) and (52) and solving for ym 1 yields
fimt_1 = —logB — (¢34 /2). Define

Vint = Umt — Pmt—1 = —pACt + I'mi_1 + 1098 + (05/2), (53)
Then,
E(Vmt | Qf_y) =0
and
E(rme-1 | Qf ;) = pE(Ace | O ) — logB — (07/2), (54)
Because that
fme1=E(fme1 [ Q) 1) +eme (55)

data, never to the daily data, not to mention the high-frequency data. It, therefore, raise the question: which
time frame is actually the most appropriate one to examine Euler consumption regression. The issue may not
be that important as far as the aggregate data is concerned. Nonetheless, when we are moving to individual
data, as the current empirical research indeed does, this issue is no longer irrelevant. The advantage of
agent-based modeling is that it allows to explore the possible existence of heterogeneity in the time frame.
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Ace = E(Ace | Q) ;) + vt (56)
Substituting (55) and (56) into (54) and rearrange, we obtain

Mmi—1 = PACt — Ut + €mt—1 — 10gB — (0’%/2), (57)

Define
Mt = —PVt + Emt—1,

and
= —logp — (o /2),
the equation (57) becomes
Mmt-1 =} + PpACt + 11t (58)

where y is a constant, and 7 is the random term.” Similarly, one could follow Hall (1988)
to derive the inverse form of (58).

ACt = T+ Prme_1 + St (59)
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