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Abstract

In this thesis, we study the basic theory of value distribution of mero-

morphic function of class A. We prove that every meromorphic function

of class A has at most two multiple values and the result is sharp. Also,

we prove that if a meromorphic function f of class A and its derivative

f (k) share a non-zero complex value, then f ≡ f (k).
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中中中文文文摘摘摘要要要

在這篇論文裡，我們探討A類半純函數的值分佈基本理論。我們證明

了每一個A類半純函數最多有兩個重值，而這個結果是最佳的情形。進

而，我們證明若一個A類半純函數 f與其導數 f (k)共非零的複數值，則

f ≡ f (k)。
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1 Introduction

In this thesis, a meromorphic function will mean meromorphic in the whole

complex plane C. Given two non-constant meromorphic functions f and g and

a ∈ C∞, the extended complex plane. We say that f and g share a IM (ignoring

multiplicities) if f − a and g − a have the same zeros ignoring multiplicities. We

say that f and g share a CM (counting multiplicities) if f − a and g − a have the

same zeros with the same multiplicities.

In 1929, R. Nevanlinna [8] proved the following remarkable results which play

an important role in the area of value distribution of meromorphic functions. Thus

the theory of value distribution became a fascinating topic. Thereafter, more and

more people participated in the research of this theory.

Theorem 1.1 [8] Let f and g be two non-constant meromorphic functions. If f

and g share five distinct values in C∞, then f ≡ g.

Theorem 1.2 [8] Let f and g be two non-constant meromorphic functions. If f

and g share four distinct values a1, a2, a3, and a4 CM, then f is a Möbius transfor-

mation of g, two of the values, say a1 and a2, must be Picard exceptional values of

f and g, and the cross ratio (a1, a2, a3, a4) = −1.

After having these results, one question may be arised. What happen if two

non-constant meromorphic functions share four values but not all CM ? Does the

conclusion in Theorem 1.2 still hold for the other cases?

In 1979 and 1983, G. G. Gundersen [4, 5] proved the following results. The

results say that two non-constant meromorphic functions sharing either three values

CM and one value IM or two values CM and two values IM are not different from

sharing all four values CM.

1
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Theorem 1.3 [4] Let f and g be two non-constant meromorphic functions. If f

and g share three values CM and share a forth value IM, then they share all four

values CM, and hence the conclusion of Thereom 1.2 holds.

Theorem 1.4 [5] Let f and g be two non-constant meromorphic functions sharing

four values a1, a2, a3, and a4. If f and g share a1, a2 CM, and a3, a4 IM, then f and

g share all four values CM, and hence the conclusion of Theorem 1.2 holds.

The remaining case, f and g share one value CM and the other three values

IM, is still open and is an interesting research problem.

In view of Nevanlinna and Gundersen’s results, it is natural to ask what happen

if two meromorphic functions share the number of values less than four.

In this thesis, we will study some value distribution of meromorphic functions

of class A. Some well-known properties will be discussed and some new results will

be obtained.

The thesis will be divided into five sections. In section 1, we give some intro-

ductions of the sharing value problems. In section 2, we review some basic theory

of value distribution. In section 3, we discuss the basic properties of meromorphic

functions of class A. In section 4, we study the multiple values of meromorphic

functions of class A. In section 5, we consider the unicity of meromorphic functions

of class A. In the end of section 4 and section 5, we get our main results in this

thesis.

2
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2 Basic Theory of Value Distribution

In this section, we introduce and review some basic facts and notations in

complex analysis and value distribution which will be used throughout the rest of

the thesis. For the sake of brevity, proofs are omitted because they are standard

and can be found in [1, 3, 6, 9, 10].

In Nevanlinna’s value distribution theory, the following Poisson-Jensen’s for-

mula plays a very important role.

Theorem 2.1 (Poisson-Jensen’s formula) Let 0 < R <∞ and f be meromor-

phic in |z| < R and aµ and bν be the zeros and poles of f in |z| < R, 1 ≤ µ ≤ M ,

1 ≤ ν ≤ N , respectively. If z = reiθ, 0 ≤ r < R, and f(z) 6= 0,∞, then we have

log |f(z)| = 1

2π

∫ 2π

0

log |f(Reiϕ)| R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2
dϕ

+
M∑
µ=1

log

∣∣∣∣R(z − aµ)

R2 − aµz

∣∣∣∣− N∑
ν=1

log

∣∣∣∣R(z − bν)
R2 − bνz

∣∣∣∣.
By taking z = 0 in Theorem 2.1, we get the Jensen’s formula.

Theorem 2.2 (Jensen’s formula) Under the assumptions of Theorem 2.1, if f(0) 6=

0,∞, then we have

log |f(0)| = 1

2π

∫ 2π

0

log |f(Reiθ)|dϕ−
M∑
µ=1

log
R

|aµ|
+

N∑
ν=1

log
R

|bν |
.

The assumption f(0) 6= 0,∞ in Theorem 2.1 can be eliminated. In fact, for

0 ≤ r < ∞, let n(r, f) denote the number of poles of f in |z| ≤ r counting

multiplicities. Consider the Laurent expansion of f at the origin

f(z) = cλz
λ + cλ+1z

λ+1 + . . .

3
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Note that λ = n(0,
1

f
)− n(0, f). Consider the function

g(z) =


f(z)

(
R

z

)λ
if z 6= 0

cλR
λ if z = 0,

then we have the generalized Jensen’s formula.

Theorem 2.3 (Generalized Jensen’s formula) Under the assumptions of The-

orem 2.1 without the condition f(0) 6= 0,∞, then we have

log |cλ| =
1

2π

∫ 2π

0

log |f(Reiϕ)|dϕ−
M∑
µ=1

log
R

|aµ|
− n(0,

1

f
) logR

+
N∑
ν=1

log
R

|bν |
+ n(0, f) logR,

where cλ is the first non-zero coefficient of the Laurent expansion of f at 0.

From now on, meromorphic function means meromorphic in the whole complex

plane. First of all, we introduce the positive logarithmic function.

Definition 2.4 For x ≥ 0,

log+ x = max{log x, 0} =

 log x if x ≥ 1

0 if 0 ≤ x < 1.

Obviously, log+ x is a continuous non-negative increasing function on [0,∞)

satisfying log x = log+ x− log+ 1

x
and | log x| = log+ x+ log+ 1

x
.

Let f be a meromorphic function, Nevanlinna [8] introduced the following

notations.

Definition 2.5 For 0 < r <∞,

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ.

4



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Definition 2.6 For 0 < r <∞,

N(r, f) =

∫ r

0

n(t, f)− n(o, f)

t
dt+ n(0, f) log r,

where n(t, f) denotes the number of poles of f in the disc |z| ≤ t counting multi-

plicities. N(r, f) is called the counting function of f .

For 0 ≤ r < ∞, n(r, f) denotes the number of poles of f(z) in |z| ≤ r count-

ing multiplicities; n(r, f) denotes the number of poles of f(z) in |z| ≤ r ignoring

multiplicities; nk)(r, 1/f) (resp. n(k(r, 1/f)) denotes the number of zeros of f(z)

in |z| ≤ r with order ≤ k (resp. ≥ k) counting multiplicities; nk)(r, 1/f) (resp.

n(k(r, 1/f)) denotes the number of zeros of f(z) in |z| ≤ r with order ≤ k (resp.

≥ k) ignoring multiplicities.

Definition 2.7 For 0 < r <∞, the function T (r, f) defined by

T (r, f) = m(r, f) +N(r, f)

is called the (Nevanlinna) characteristic function of f .

It is clear that T (r, f) is a non-negative increasing function and a convex func-

tion of log r. Let f be given in Theorem 2.1. It follows from the integration by

parts in Riemann-Stieltjes integral, we have

M∑
µ=1

log
R

|aµ|
=

∫ R

0

n(t, 1
f
)− n(0, 1

f
)

t
dt

and
M∑
ν=1

log
R

|bν |
=

∫ R

0

n(t, f)− n(0, f)

t
dt.

On the other hand, the generalized Jensen’s formula can be rewritten as

1

2π

∫ 2π

0

log+ | f(Reiϕ) | dϕ+
N∑
ν=1

log
R

| bν |
+ n(0, f) logR

=
1

2π

∫ 2π

0

log+
∣∣∣∣ 1

f(Reiϕ)

∣∣∣∣ dϕ+
M∑
µ=1

log
R

| aµ |
+ n(0,

1

f
) logR + log | cλ |.

5
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Therefore, we obtain

m(R, f) +N(R, f) = m(R,
1

f
) +N(R,

1

f
) + log |cλ|,

that is,

T (R, f) = T (R,
1

f
) + log |cλ|,

which is another form of the generalized Jensen’s formula and is also known as the

Nevanlinna-Jensen’s formula.

Theorem 2.8 (Nevanlinna-Jensen’s formula) Let f be a meromorphic func-

tion, then for r > 0,

T (r, f) = T (r,
1

f
) + log |cλ|,

where cλ is the first non-zero coefficient of the Laurent expansion of f at 0.

By the Nevanlinna-Jensen’s formula, we can get the Nevalinna’s first funda-

mental theorem.

Theorem 2.9 (Nevanlinna’s First Fundamental Theorem) Let f be a mero-

morphic function and a be a finite complex number. Then, for r > 0, we have

T (r,
1

f − a
) = T (r, f) + log |cλ|+ ε(a, r),

where cλ is the first non-zero coefficient of the Laurent expansion of
1

f − a
at 0, and

|ε(a.r)| ≤ log+ |a|+ log 2.

Usually, Nevanlinna’s first fundamental theorem is written as

T (r,
1

f − a
) = T (r, f) +O(1).

Now, we come to the most important theorem in the theory of value distribu-

tion, namely, Nevanlinna’s second fundamental theorem.

6
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Theorem 2.10 (Nevanlinna’s Second Fundamental Theorem) Let f be a non-

constant meromorphic function and aj ∈ C, 1 ≤ j ≤ q, be q distinct finite values

(q ≥ 2). Then

m(r, f) +

q∑
j=1

m(r,
1

f − aj
) ≤ 2T (r, f)−N1(r) + S(r, f),

where N1(r) = 2N(r, f)−N(r, f ′) +N(r,
1

f ′
) and

S(r, f) = m(r,
f ′

f
) +m(r,

q∑
j=1

f ′

f − aj
) +O(1).

Given a ∈ C, by Nevanlinna’s first fundamental theorem,

m(r,
1

f − a
) = T (r, f)−N(r,

1

f − a
) +O(1).

Hence, Nevanlinna’s second fundamental theorem can be rewritten as follows.

Theorem 2.11 Let f be a non-constant meromorphic function and aj ∈ C∞, 1 ≤

j ≤ q, be q distinct values (q ≥ 3). Then

(q − 2)T (r, f) <

q∑
j=1

N(r,
1

f − aj
)−N1(r) + S(r, f),

where N1(r) and S(r, f) are given as in Theorem 2.10.

Note that, in Theorem 2.11, if some aj =∞, then N(r,
1

f − aj
) should be read

as N(r, f).

Let n1(t) = 2n(t, f) − n(t, f ′) + n(t,
1

f ′
) and let n(t, f) denote the number of

distinct poles of f in |z| ≤ t. Define

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

which is called the reduced counting function of f.

7
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Note that, if z0 is a pole of f of order k in |z| ≤ t, then z0 is counted k − 1

times by n1(r). Similarly, for a finite value a, if z0 is a zero of f − a of order k in

|z| ≤ t, then z0 is also counted k − 1 times by n1(r). Hence,

q∑
j=1

N(r,
1

f − aj
)−N1(r) ≤

q∑
j=1

N(r,
1

f − aj
).

Therefore, we have the third form of Nevanlinna’s second fundamental theorem.

Theorem 2.12 Let f be a non-constant meromorphic function and aj ∈ C∞, 1 ≤

j ≤ q, be q distinct values (q ≥ 3). Then

(q − 2)T (r, f) <

q∑
j=1

N(r,
1

f − aj
) + S(r, f),

where S(r, f) is given as in Theorem 2.10.

In Nevanlinna’s second fundamental theorem, the remainder term S(r, f) is

a complicated object which can be estimated by using the method of logarithmic

derivative. It turns out that S(r, f) is small comparing to T (r, f). In order to make

it clear, we need the concept of the growth of meromorphic function.

Classically, we use the maximum modulus to measure the growth of an entire

function.

Definition 2.13 Let f be a meromorphic function. The order λ of f is defined to

be

λ = lim sup
r→∞

log+ T (r, f)

log r

and the lower order µ of f is defined to be

µ = lim inf
r→∞

log+ T (r, f)

log r
.

Definition 2.14 Let f(z) and a(z) be meromorphic functions. If T (r, a) = S(r, f),

then a(z) is called a small function of f(z).

8
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Let f be an entire function. Define, for r ≥ 0,

M(r, f) = max
|z|≤r
|f(z)|.

Then the relation between M(r, f) and T (r, f) is given as follows.

Theorem 2.15 Let 0 ≤ r < R <∞ and f be an entire function, we have

T (r, f) ≤ log+M(r, f) ≤ R + r

R− r
T (R, f).

In particular,

T (r, f) ≤ log+M(r, f) ≤ 3T (2r, f).

By Theorem 2.15, the order and lower order of an entire function are unam-

biguous. Now, we can state the properties of S(r, f).

Lemma 2.16 Let f be a non-constant meromorphic function. If f is of finite

order, then

m(r,
f ′

f
) = O(log r), (r →∞).

If f is of infinite order, then

m(r,
f ′

f
) = O(log(rT (r, f))), (r →∞, r /∈ E),

where E is a set of finite measure.

Theorem 2.17 Let f be a non-constant meromorphic function and S(r, f) be de-

fined in Theorem 2.10. If f is of finite order, then

S(r, f) = O(log r), (r →∞).

If f is of infinite order, then

S(r, f) = O(log (rT (r, f))), (r →∞, r /∈ E),

where E is a set of finite measure.

9
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In the thesis, we will denote by S(r, f) any quantity satisfy S(r, f) = o(T (r, f))

as r →∞ if f is of finite order, and S(r, f) = o(T (r, f)) as r →∞, r /∈ E if f is of

infinite order, where E is a set of finite measure.

By Lemma 2.16, m(r,
f ′

f
) = S(r, f). Moreover, Milloux [7] proved the following.

Theorem 2.18 Let f be a non-constant meromorphic function and k be a positive

integer and let

Ψ(z) =
k∑
i=1

ai(z)f (i)(z),

where a1(z), a2(z), . . . , ak(z) are small functions of f . Then

m(r,
Ψ

f
) = S(r, f).

For three small functions, we still have the generalization of second fundamental

theorem.

Theorem 2.19 [9] Let f be a non-constant meromorphic function and a1(z), a2(z)

and a3(z) are three distinct small functions. Then

T (r, f) <
3∑
j=1

N(r,
1

f − aj
) + S(r, f).

In 1929, Nevanlinna [9] introduced the quantity δ(a, f) to measure the degree

of a meromorphic function misses a value a.

Definition 2.20 Let f be a non-constant meromorphic function and a ∈ C∞. The

deficiency of a with respect to f is defined by

δ(a, f) = lim inf
r→∞

m(r, 1
f−a)

T (r, f)
= 1− lim sup

r→∞

N(r, 1
f−a)

T (r, f)
.

10
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Definition 2.21 Let f be a non-constant meromorphic function and a ∈ C∞. We

define

Θ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a)

T (r, f)
,

and

θ(a, f) = lim inf
r→∞

N(r, 1
f−a)−N(r, 1

f−a)

T (r, f)
.

Clearly, 0 ≤ δ(a, f) ≤ 1, 0 ≤ Θ(a, f) ≤ 1 and 0 ≤ θ(a, f) ≤ 1. Also, 0 ≤

δ(a, f) + θ(a, f) ≤ Θ(a, f). By Theorem 2.12, we have

Theorem 2.22 Let f be a non-constant meromorphic function. Then∑
a

δ(a, f) + θ(a, f) ≤
∑
a

Θ(a, f) ≤ 2.

In order to study uniqueness theorems of meromorphic functions, we state a

Nevanlinna theorem which plays an important role.

Theorem 2.23 [9] Suppose f1, . . . , fn are linearly independent meromorphic func-

tions satisfying the following identity

n∑
j=1

fj ≡ 1.

Then for 1 ≤ j ≤ n, we have

T (r, fj) ≤
n∑
k=1

N(r,
1

fk
) +N(r, fj) +N(r,D)

−
n∑
k=1

N(r, fk)−N(r,
1

D
) + o(T (r)),

where D is the Wronskian of f1, . . . , fn, and

T (r) = max
1≤k≤n

{T (r, fk)},

E is a set with finite linear measure.

11
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Moreover, we can get a useful result in the uniqueness theorem of meromorphic

functions.

Theorem 2.24 [9] Let fj(j = 1, 2, 3) be meromorphic functions where f1 be not a

constant function. If
3∑
j=1

fj(z) ≡ 1,

and
3∑
j=1

N(r,
1

fj
) + 2

3∑
j=1

N(r, fj) < (λ+ o(1))(T (r)) (r ∈ I),

where λ < 1,

T (r) = max
1≤j≤3

{T (r, fj)},

and I is a set of r ∈ (0,∞) with infinite measure, then f2(z) ≡ 1 or f3(z) ≡ 1.

Finally, we review some theorems which will be needed in the following sections.

Theorem 2.25 [9] Suppose that f is a meromorphic function in |z| < R and

g(z) =
af(z) + b

cf(z) + d
, where a, b, c, and d are constant satisfying ad− bc 6= 0. Then for

0 < r < R, we have

T (r, g) = T (r, f) +O(1).

Theorem 2.26 [9] If f is a transcendental meromorphic function in the complex

plane, then

lim
r→∞

T (r, f)

log r
=∞.

12
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3 Meromorphic Functions of Class A

Let A denote the collection of all non-constant meromorphic functions f sat-

isfying

N(r, f) +N(r,
1

f
) = S(r, f).

Such functions are called meromorphic functions of class A. Clearly, ez, zez, . . .

are functions of class A.

Proposition 3.1 If f is a non-constant rational function, write

f(z) =
apz

p + ap−1z
p−1 + · · ·+ a0

bqzq + bq−1zq−1 + · · ·+ b0
,

where ap(6= 0), ap−1, . . . , a0 and bq(6= 0), bq−1, . . . , b0 are complex numbers, p, q are

non-negative integers satisfying p + q ≥ 1, and apz
p + ap−1z

p−1 + · · · + a0 and

bqz
q + bq−1z

q−1 + · · ·+ b0 have no common factors. Then

m(r, f) =

 (p− q) log r +O(1) if p > q,

O(1) if p ≤ q

and

N(r, f) = q log r +O(1)

holds for a sufficiently large r. Thus,

T (r, f) = max {p, q} log r +O(1).

Proof . First, we prove that m(r, f) =

 (p− q) log r +O(1) if p > q,

O(1) if p ≤ q,

P (z) = apz
p + ap−1z

p−1 + · · ·+ a0 and Q(z) = bqz
q + bq−1z

q−1 + · · ·+ b0.

Let A(r) =
|ap−1|
|ap|

1

r
+ · · ·+ |a0|

|ap|
1

rp
and B(r) =

|bq−1|
|bq|

1

r
+ · · ·+ |b0|

|bq|
1

rq
.

13
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Given ε > 0 , there exists r0 > 0, such that |A(r)| < ε and |B(r)| < ε for r ≥ r0.

So for all r ≥ r0 and |z| = r,

(1− ε)|ap|rp ≤ |P (z)| ≤ (1 + ε)|ap|rp

and

(1− ε)|bq|rq ≤ |Q(z)| ≤ (1 + ε)|bq|rq.

Let α =
(1− ε)|ap|
(1 + ε)|bq|

and β =
(1 + ε)|ap|
(1− ε)|bq|

, then for all r ≥ r0,

αrp−q ≤ |f(z)| ≤ βrp−q.

If p > q and r ≥ 0, then there exists M > 0, such that

|m(r, f)− (p− q) log r| ≤M,

which means that m(r, f) = (p− q) log r +O(1).

If p = q, then for all r ≥ r0 and |z| = r,

α ≤ |f(z)| ≤ β.

So we get logα+ ≤ m(r, f) ≤ log β+, which means that m(r, f) = O(1).

If p < q, then by choosing r > 0, such that 0 < αrp−q < 1 and rp−q < 1,

we get m(r, f) = O(1).

Now, we prove N(r, f) = q log r +O(1) for a sufficiently large r.

Choose r0 > 0 such that Q(z) has q zeros in |z| < r0.

We may assume that Q has a zero at z = 0 of multiple m ≥ 0. Then for all r ≥ r0,

N(r, f) =

∫ r

0

n(t, f)− n(o, f)

t
dt+ n(0, f) log r

=

∫ r

δ

n(t, f)− n(o, f)

t
dt+ n(0, f) log r

= (q −m)(log r − log δ) +m log r

= q log r − (q −m) log δ

= q log r +O(1),

14
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where δ > 0 is small.

Therefore, we have T (r, f) = max {p, q} log r +O(1) for a sufficiently large r.

q

In general, the following class of meromorphic function is of class A.

Proposition 3.2 Let α be a non-constant entire function and h be a non-zero

rational function. Then

f(z) = h(z)eα(z)

is a meromorphic function of class A.

Proof . Let h(z) =
P (z)

Q(z)
be a nonzero rational function, degP (z) = p, degQ(z) =

q, (P (z), Q(z)) = 1. Choose r0 > 0, so that all zeros of P (z) and Q(z) lie in |z| < r0.

Then by Theorem 3.1, for all r ≥ r0, we have

N(r, h) = q log r

and

N(r,
1

h
) = p log r.

By assumption, eα(z) is an entire function without zeros, so we have

N(r, f) = N(r, h) ≤ N(r, h) = q log r

and

N(r,
1

f
) = N(r,

1

h
) ≤ N(r,

1

h
) = p log r,

which imples that

N(r, f) +N(r,
1

f
) ≤ q log r + p log r.

Therefore, we get

N(r, f) +N(r,
1

f
) = S(r, f)

by Theorem 2.26. So we conclude that f ∈ A. q

15
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Proposition 3.3 If f is a meromorphic function of class A, then so is
1

f
.

Proof . Since f ∈ A, we have N(r, f) +N(r,
1

f
) = S(r, f).

By the Theorem 2.25 , T (r, f) = T (r,
1

f
) +O(1), we have

N(r, f) +N(r,
1

f
) = S(r,

1

f
),

and 1/f is a meromorphic function of class A. q

However, if f and g are of functions of class A, f + g and fg may not be of

class A; for example, f(z) = ez, g(z) = −ez and h(z) = e−z are of meromorphic

functions of class A, but f + g and fh are not meromorphic functions of class A.

Proposition 3.4 All functions in A are transcendental meromorphic functions.

Proof . Let f(z) =
P (z)

Q(z)
be a non-constant rational function, degP (z) = p,

degQ(z) = q, (P (z), Q(z)) = 1 and p + q ≥ 1. Choose r0 > 0, so that all zeros of

P (z) and Q(z) lie in |z| ≤ r0. Then by Theorem 3.1, for all r ≥ r0,

N(r, f) = q log r,

N(r,
1

f
) = p log r,

and

T (r, f) = max {p, q} log r +O(1).

Now, assume that P (z) has s distinct zeros and Q(z) has t distinct zeros, then,

s ≤ p, t ≤ q, and for all r ≥ r0, we have

N(r, f) = t log r

and

N(r,
1

f
) = s log r.

16
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Therefore,

lim
r→∞

N(r, f) +N(r, 1
f
)

T (r, f)
=

r + s

max {p, q}
which is not zero. So f is not a meromorphic function of class A. q

Proposition 3.5 Let f be a meromorphic function with Θ(0, f) = Θ(∞, f) = 1,

then f ∈ A.

Proof . Since Θ(0, f) = Θ(∞, f) = 1, we have

Θ(0, f) = 1− lim sup
r→∞

N(r, 1
f
)

T (r, f)
= 1

and

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)

T (r, f)
= 1,

which imply

lim
r→∞

N(r, f) +N(r, 1
f
)

T (r, f)
≤ lim sup

r→∞

N(r, f)

T (r, f)
+ lim sup

r→∞

N(r, 1
f
)

T (r, f)

= 1−Θ(0, f) + 1−Θ(∞, f)

= 0.

Therefore, N(r, f) +N(r,
1

f
) = o(T (r, f)) = S(r, f) and f ∈ A. q

Remark. In the literature, a non-constant meromorphic function f satisfying

Θ(0, f) = Θ(∞, f) = 1 is called meromorphic functions of class K.

Proposition 3.6 Let f be a meromorphic function with δ(0, f) = δ(∞, f) = 1, then

f ∈ A.

Proof . Since δ(0, f) = δ(∞, f) = 1, we have

Θ(0, f) = Θ(∞, f) = 1.

By Proposition 3.5, we get f ∈ A. q

17
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Remark. In the literature, a non-constant meromorphic function f satisfying

δ(0, f) = δ(∞, f) = 1 is called meromorphic functions of class F .

For further properties of meromorphic functions of class A, we recall the fol-

lowing proposition.

Proposition 3.7 [9] If f ∈ A and k is a positive integer, then

(i) T (r,
f (k)

f
) = S(r, f);

(ii) T (r, f (k)) = T (r, f) + S(r, f);

(iii) f (k)(z) ∈ A.

Proof . Since f ∈ A, we have N(r, f)+N(r,
1

f
) = S(r, f). In particular, N(r, f) =

S(r, f) and N(r,
1

f
) = S(r, f).

By Lemma 2.16 , m(r,
f (k)

f
) = S(r, f). Therefore,

T (r,
f (k)

f
) = N(r,

f (k)

f
) +m(r,

f (k)

f
)

≤ k{N(r, f) +N(r,
1

f
)}+ S(r, f)

= S(r, f),

which implies (i).

By the basic property of characteristic function & (i), we have

T (r, f (k)) ≤ T (r,
f (k)

f
) + T (r, f) ≤ T (r, f) + S(r, f).

Similarly, we have

T (r, f) ≤ T (r, f (k)) + T (r,
f

f (k)
)

= T (r, f (k)) + T (r,
f (k)

f
) +O(1)

= T (r, f (k)) + S(r, f).

18
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We obtain T (r, f (k)) = T (r, f) + S(r, f). So, (ii) holds.

Finally, by (i) & (ii), we have

N(r, f (k)) = N(r, f) = S(r, f) = S(r, f (k)),

and

N(r,
1

f (k)
) ≤ N(r,

f

f (k)
) +N(r,

1

f
)

≤ T (r,
f

f (k)
) + S(r, f)

≤ T (r,
f (k)

f
) + S(r, f)

= S(r, f).

Therefore, N(r, f (k)) +N(r,
1

f (k)
) = S(r, f (k)) and (iii) holds. q

Now, we can prove the main result in this section.

Theorem 3.8 Let a and b be distinct complex numbers and f be a non-constant

meromorphic function satisfies N(r,
1

f − a
) + N(r,

1

f − b
) = S(r, f). Then f is a

Möbius transformation of a function in class A

Proof . Consider the meromorphic function g defined by

g(z) =
f(z)− b
f(z)− a

.

Then, by Theorem 2.25, T (r, f) = T (r, g) +O(1). Obviously, we have

N(r, g) = N(r,
1

f − a
)

and

N(r,
1

g
) = N(r,

1

f − b
).
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Therefore, by assumption, we have

N(r, g) +N(r,
1

g
) = N(r,

1

f − a
) +N(r,

1

f − b
)

= S(r, f)

= S(r, g),

which says that g is a function of class A. By a simple calculation, we get

f =
ag − b
g − 1

which says that f is a Möbius transformation of g. q
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4 Multiple Values of Meromorphic Functions of Class A

Definition 4.1 Let f be a non-constant meromorphic function, and a ∈ C∞. We

say that a is a multiple value of f if all the zeros of f(z)− a are multiple.

Example 4.2 0 is a multiple value of f(z) = (z − 1)2(z + 1)4.

Example 4.3 0,∞ are multiple values of ez

For general meromorphic functions, we have the following well-known result

about multiple values.

Theorem 4.4 Let f be a non-constant meromorphic function, then f has at most

four distinct multiple values.

Proof . Suppose that f has five distinct multiple values, say a1, a2, a3, a4, a5 ∈ C∞.

By Theorem 2.12,

(5− 2)T (r, f) <
5∑
j=1

N(r,
1

f − aj
) + S(r, f)

≤ 1

2

5∑
j=1

N(r,
1

f − aj
) + S(r, f)

≤ 1

2

5∑
j=1

T (r, f) + S(r, f)

=
5

2
T (r, f) + S(r, f),

which is a contradiction. So f has at most four multiple values. q

In fact, there exists a meromorphic function which has exact four multiple

values, namely, the well-known Weierstrass ℘-function ℘(z) which satisfies the dif-

ferential equation

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),
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where e1, e2, e3 are distinct constants. It is obvious that e1, e2, e3 and∞ are multiple

values of ℘(z). Therefore, Theorem 4.4 is sharp.

Now, we consider the case of meromorphic function of class A and prove our

main result in this section as follows.

Theorem 4.5 Let f be a meromorphic function of class A, then f has at most two

multiple values.

Proof . Suppose that f has three distinct multiple values, say a1, a2, a3 ∈ C∞.

Since f ∈ A, we have

N(r, f) +N(r,
1

f
) = S(r, f).

Case 1. a1, a2, a3 are different from 0 and ∞. Then, by Theorem 2.12,

(5− 2)T (r, f) ≤
3∑
j=1

N(r,
1

f − aj
) +N(r, f) +N(r,

1

f
) + S(r, f)

≤ 1

2

3∑
j=1

N(r,
1

f − aj
) + S(r, f)

≤ 3

2
T (r, f) + S(r, f),

which is impossible.

Case 2. One of a1, a2, a3 is 0 or ∞.

(4− 2)T (r, f) ≤
2∑
j=1

N(r,
1

f − aj
) +N(r, f) +N(r,

1

f
) + S(r, f)

≤ 1

2

2∑
j=1

N(r,
1

f − aj
) + S(r, f)

≤ T (r, f) + S(r, f),

which is also impossible.
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Case 3. Two of a1, a2, a3 are 0 and ∞.

(3− 2)T (r, f) ≤ N(r, f) +N(r,
1

f
) +N(r,

1

f − a
) + S(r, f)

= N(r,
1

f − a
) + S(r, f)

≤ 1

2
N(r,

1

f − a
) + S(r, f)

≤ 1

2
T (r, f) + S(r, f),

which is a contradiction.

Therefore, f has at most two multiple values. q

The function f(z) = z2ez is of class A by Proposition 3.2, and it has exact two

multiple values, namely, 0 and ∞. Therefore, Theorem 4.5 is sharp.
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5 The Unicity of Meromorphic Functions of Class A

In this section, we will discuss the sharing value problem of meromorphic func-

tion of class A and obtain some results.

In order to state and prove the theorems, we need some preliminaries.

Lemma 5.1 [9] If f ∈ A and a is a finite non-zero number, then

N1)(r,
1

f − a
) = T (r, f) + S(r, f),

where N1)(r,
1

f − a
) denotes the counting function of simple zeros of f − a.

The following result is stated without proof in [9]. For completeness, we give

a proof.

Theorem 5.2 [9] Let f and g be meromorphic functions of class A and a be a

non-zero complex number. If f and g share a IM, then either f ≡ g or fg ≡ a2.

Proof . By considering
f

a
and

g

a
if necessary, we may assume that a = 1.

By Lemma 5.1, we have

N1)(r,
1

f − 1
) = T (r, f) + S(r, f)

and

N1)(r,
1

g − 1
) = T (r, g) + S(r, g).

Hence,

N(2(r,
1

f − 1
) = S(r, f)

and

N(2(r,
1

g − 1
) = S(r, g),
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where N(2(r,
1

f − 1
) is the counting function of f − 1 with multiplicities greater or

equal to 2, similarly for N(2(r,
1

g − 1
).

Since f and g are meromorphic functions of class A and they share 1 IM, by

Theorem 2.12, we have

T (r, g) = T (r, f) + S(r, f).

Set

h(z) =
f(z)− 1

g(z)− 1
.

Obviously, we have

N(r, h) ≤ N(r, f) +N (2(r,
1

g − 1
) = S(r, f),

N(r,
1

h
) ≤ N(r, g) +N (2(r,

1

f − 1
) = S(r, f),

and

T (r, h) ≤ T (r, f) + T (r, g) +O(1) ≤ 2T (r, f) + S(r, f).

Let f1 = f , f2 = h, f3 = −hg. Then
3∑
j=1

fj ≡ 1 and

3∑
j=1

N(r,
1

fj
) + 2

3∑
j=1

N(r, fj) = S(r, f).

By Theorem 2.24, we conclude that either f2 ≡ 1 or f3 ≡ 1 which imply that either

f ≡ g or fg ≡ 1 and the proof is completed. q

Finally, we consider the sharing value problem of a meromorphic function with

its derivative.

The following well-known result has been proved by Frank-Weissenborn [2] in

1986.

Theorem 5.3 Let f be a non-constant meromorphic function and k ≥ 1. If f and

f (k) share distinct finite value a and b CM, then f ≡ f (k).
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For meromorphic functions of class A, we can use Theorem 5.2 to obtain the

following result.

Theorem 5.4 Let f be a non-constant meromorphic function of class A, a be a

non-zero complex number and k ≥ 1. If f and f (k) share a IM, then f ≡ f (k).

Proof . Since f ∈ A, by Proposition 3.7, f (k) ∈ A.

Thus, we can apply Theorem 5.2 to conclude that either f ≡ f (k) or ff (k) ≡ a2.

If ff (k) ≡ a2 holds, then

T (r,
f (k)

f
) = T (r,

a2

f 2
)

= 2T (r, f) +O(1).

Which contradicts to Proposition 3.7, namely, T (r,
f (k)

f
) = S(r, f).

Therefore, we must have f ≡ f (k). q
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