行政院國家科學委員會專題研究計畫 成果報告

一個反應擴散方程系統之行波解的穩定性研究研究成果報告（精簡版）

計 畫 類 別 ：個別型
計 畫 編 號 ：NSC 98－2115－M－004－001－
執行期間：98年08月01日至99年07月31日
執行單位：國立政治大學應用數學學系

計畫主持人：符聖珍
計畫參與人員：碩士班研究生－兼任助理人員：李宣緯

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 99年10月20日

Existence of solutions to PBVPs for first-order impulsive dynamic equations on time scales ${ }^{\star}$

Sheng-Chen Fu and Yi-Chang Liang
Department of Mathematical Sciences, National Chengchi University, 64, S-2 Zhi-nan Road, Taipei 116, Taiwan

Abstract

In this paper we are concernd with periodic boundary value problems for firstorder impulsive dynamic equations on time scales. By using Schaefer's theorem and Banach's fixed point theorem we acquire some new existence results.

Key words: Time scale; Periodic boundary value problem; Impulsive dynamic equation
MSC: 34N05

1 Introduction

The theory of dynamic equations on time scales has received a lot of attention since it can not only unify, extend, and generalize the theories of differential equations and difference equations but also have various practical applications. For more details about this theory, we refer the readers to [1], [2], and [3]. One of the important research trends is the investigation of impulsive dynamic equations on time scales. Recently, some researchers have focused their attention on periodic boundary value problems (PBVPs for short) for first-order impulsive dynamic equations. For example, Geng, Xu, and Zhu [4] applied the method of upper and lower solutions coupled with monotone iterative techniques to derive the existence of extremal solutions and Wang [5]

[^0]used the Guo-Krasnoselskii fixed point theorem to obtain some existence criteria for positive solutions. However, to the best of the authors' knowledge, there is no existence criteria for (not necessarily positive) solutions to PBVPs for first-order impulsive dynamic equations on time scales so far.

Let \mathbb{T} be a time scale, i.e., a nonempty closed subset of \mathbb{R}, and let $0, T \in$ \mathbb{T}. Throughout this paper, $[0, T]_{\mathbb{T}}$ represents an interval on \mathbb{T}, i.e., $[0, T]_{\mathbb{T}}=$ $[0, T] \cap \mathbb{T}$. Other types of intervals on \mathbb{T} can be represented by a similar way Let $J=[0, \sigma(T)]_{\mathbb{T}}$. Motivated by [6], [7], and the above works, in this paper, we are concerned with the existence of solutions to the following PBVPs for first-order impulsive dynamic equations on \mathbb{T}

$$
\begin{align*}
& x^{\Delta}+p(t) x^{\sigma}=f(t, x), \quad t \in[0, T]_{\mathbb{T}}, \quad t \neq t_{k}, \quad k=1, \ldots, m \tag{1}\\
& x\left(t_{k}+\right)-x\left(t_{k}-\right)=I_{k}\left(x\left(t_{k}-\right)\right), \quad k=1, \ldots, m \tag{2}\\
& x(0)=x(\sigma(T)) \tag{3}
\end{align*}
$$

where $f \in C(J \times \mathbb{R}, \mathbb{R})$, $I_{k} \in C(\mathbb{R}, \mathbb{R}), p: J \rightarrow[0, \infty)$ is rd-continuous and regressive with $p \not \equiv 0$, and the points $t_{k}, k=1, \ldots, m$, are right-dense in \mathbb{T} such that $0<t_{1}<\cdots<t_{m}<T$. For convenience, we shall refer to (1)-(2)-(3) as (NP).

When $I_{k}(x) \equiv 0$ for all $k=1, \ldots, m$, the problem (NP) can be reduced to the following PBVPs with no impulse effects

$$
\begin{aligned}
& x^{\Delta}+p(t) x^{\sigma}=f(t, x), \quad t \in[0, T]_{\mathbb{T}}, \\
& x(0)=x(\sigma(T)),
\end{aligned}
$$

which has been investigated by several researchers; see for example, [8], [9], [10], [11], and the references cited therein.

PBVPs for first-order impulsive differential equations and difference equations (i.e., the cases $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{Z}$) have been studied; see for example, [12], [13], [6], [14], [15], [16], [17], [7], [18] for $\mathbb{T}=\mathbb{R}$ and [19] for $\mathbb{T}=\mathbb{Z}$.

Let $J_{0}=\left[0, t_{1}\right]_{\mathbb{T}}, J_{k}=\left(t_{k}, t_{k+1}\right]_{\mathbb{T}}$ for $k=1, \ldots, m-1$, and $J_{m}=\left(t_{m}, \sigma(T)\right]_{\mathbb{T}}$ and let
$P C=\left\{x: J \rightarrow \mathbb{R} \mid x_{k} \in C\left(J_{k}\right), \forall k=0, \ldots, m\right.$, and both $x\left(t_{k}+\right)$ and $x\left(t_{k}-\right)$ exist such that $\left.x\left(t_{k}-\right)=x\left(t_{k}\right), \forall k=1, \ldots, m\right\}$,
where x_{k} is the restriction of x to J_{k} for each $k=0, \ldots, m$. We introduce the Banach space $X=\{x \in P C: x(0)=x(\sigma(T))\}$ with the norm $\|x\|_{X}=$ $\sup _{t \in J}|x(t)|$.

Definition 1.1 A function x is said to be a solution of (NP) if and only if $x \in P C \cap C^{1}\left([0, T]_{\mathbb{T}} \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}, \mathbb{R}\right)$ and satisfies (1)-(2)-(3).

We shall apply the well-known Banach's fixed point theorem and Schaefer's theorem to establish the existence criteria of solutions for (NP). For readers' convenience, we provide these two theorems here.

Lemma 1.2 (Banach's fixed point theorem [20]) A contraction f of a complete metric space S has a unique fixed point in S.

Lemma 1.3 (Schaefer's theorem [20]) Let S ba a normed linear space, and let operator $F: S \rightarrow S$ be compact. If the set

$$
H(F)=\{x \in S: x=\mu F(x) \text { for some } \mu \in(0,1)\}
$$

is bounded, then F has a fixed point in S.

2 Linear problem

In this section we consider the "linear problem"

$$
\begin{aligned}
& x^{\Delta}+p(t) x^{\sigma}=h(t), \quad t \in[0, T]_{\mathbb{T}}, t \neq t_{k}, k=1, \ldots, m, \\
& x\left(t_{k}+\right)-x\left(t_{k}-\right)=I_{k}\left(x\left(t_{k}-\right)\right), \quad k=1, \ldots, m, \\
& x(0)=x(\sigma(T)) .
\end{aligned}
$$

For convenience, we shall refer to this problem as (LP). Note that (LP) is not really a linear problem since the impulsive functions $I_{k}, k=1, \ldots, m$, may or may not be linear.

The following two basic lemmas will be used later and their proofs can be found in [5].

Lemma 2.1 Suppose that $h: J \rightarrow \mathbb{R}$ is rd-continuous. Then x is a solution of (LP) if and only if x is a solution of

$$
\begin{equation*}
x(t)=\int_{0}^{\sigma(T)} G(t, s) h(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right), \quad t \in J, \tag{4}
\end{equation*}
$$

where

$$
G(t, s)= \begin{cases}\frac{e_{p}(s, t) e_{p}(\sigma(T), 0)}{e_{p}(\sigma(T), 0)-1}, & 0 \leq s \leq t \leq \sigma(T) \\ \frac{e_{p}(s, t)}{e_{p}(\sigma(T), 0)-1}, & 0 \leq t<s \leq \sigma(T)\end{cases}
$$

Lemma 2.2 Let $G(t, s)$ be defined as Lemma 2.1. Then

$$
0 \leqslant G(t, s) \leqslant \frac{e_{p}(\sigma(T), 0)}{e_{p}(\sigma(T), 0)-1} \triangleq A \quad \text { for all } t, s \in J
$$

Our existence result for (LP) is as follows.
Theorem 2.3 Suppose that there exist positive constants $l_{k}, k=1, \ldots, m$, such that

$$
\left|I_{k}(x)-I_{k}(y)\right| \leq l_{k}|x-y| \text { for all } x, y \in \mathbb{R} \text { and } k=1, \ldots, m
$$

If

$$
A \sum_{k=1}^{m} l_{k}<1,
$$

then the problem (LP) has a unique solution for any $h \in P C$.
Proof. First, we define the operator $\Psi: X \rightarrow X$ by

$$
\Psi x(t)=\int_{0}^{\sigma(T)} G(t, s) h(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right),
$$

so that fixed points of Ψ are solutions of (LP) and vice versa. Next, we claim that Ψ is a contraction mapping. To show this, we consider $u, v \in X$ and $t \in J$. It is easy to see that

$$
\begin{aligned}
|(\Psi u)(t)-(\Psi v)(t)| & =\left|\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)-\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(v\left(t_{k}\right)\right)\right| \\
& \leq \sum_{k=1}^{m}\left|G\left(t, t_{k}\right)\right|\left|I_{k}\left(u\left(t_{k}\right)\right)-I_{k}\left(v\left(t_{k}\right)\right)\right| \\
& \leq \sum_{k=1}^{m} A l_{k}\left|u\left(t_{k}\right)-v\left(t_{k}\right)\right| \\
& \leq \sum_{k=1}^{m} A l_{k}\|u-v\|
\end{aligned}
$$

and hence

$$
\|\Psi u-\Psi v\| \leq A \sum_{k=1}^{m} l_{k}\|u-v\| .
$$

This means that Ψ is a contraction mapping. Finally, applying Banach's fixed point theorem, we conclude that Ψ has a unique fixed point $x \in X$ so that (LP) has exactly one solution.

3 Nonlinear problem

In this section we study the "nonlinear problem" (NP). It follows from Lemma 2.1 that $x \in X$ is a solution of (NP) if and only if it satisfies

$$
x(t)=\int_{0}^{\sigma(T)} G(t, s) f(s, x(s)) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right), \quad t \in J .
$$

Introduce the operator $\Phi: X \rightarrow X$ by the formula

$$
\Phi x(t)=\int_{0}^{\sigma(T)} G(t, s) f(s, x(s)) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right), \quad t \in J
$$

Obviously, fixed points of Φ are solutions of (NP) and conversely.
Definition 3.1 Let F be a subset of $P C$. We say that F is quasiequicontinuous on J if for every $\epsilon>0$ there exists $\delta>0$ such that if $f \in F$ and $k=0, \ldots, m$, then

$$
|f(t)-f(\tilde{t})|<\epsilon, \forall t, \tilde{t} \in J_{k} \text { and }|t-\tilde{t}|<\delta
$$

In order to show that Φ is compact, we need the following compactness criteria.

Lemma 3.2 A set $F \subset P C$ is relatively compact on J if F is bounded and quasiequicontinuous on J.

Proof. Let $\left\{x_{n}\right\}$ be a sequence in F. From assumption, we know that $\left\{x_{n}\right\}$ is uniformly bounded and equicontinuous on J_{0}. By Arzela's theorem, there is a convergent subsequence $\left\{x_{n}^{(1)}\right\}$ of $\left\{x_{n}\right\}$ on J_{0}. Since $\left\{x_{n}^{(1)}\right\}$ is uniformly bounded and equicontinuous on J_{1}, it follows from Arzela's theorem that there is a convergent subsequence $\left\{x_{n}^{(2)}\right\}$ of $\left\{x_{n}^{(1)}\right\}$ on J_{1}. Continuing this process, we can get a convergent subsequence $\left\{x_{n}^{(m+1)}\right\}$ of $\left\{x_{n}^{(m)}\right\}$ on J_{m}. It is clear that $\left\{x_{n}^{(m+1)}\right\}$ is a convergent subsequence of $\left\{x_{n}\right\}$ on J. Hence F is relatively compact.

Lemma $3.3 \Phi: X \rightarrow X$ is compact.
Proof. Let D be a bounded subset of X. The continuity of f and I_{k} implies that there exist positive constants M and M_{k} such that $|f(t, x(t))| \leq M$ and $\left|I_{k}\left(x_{t_{k}}\right)\right| \leq M_{k}$ for all $x \in D, t \in J$, and $k=1, \ldots, m$. Hence we have

$$
\begin{aligned}
|\Phi x(t)| & =\left|\int_{0}^{\sigma(T)} G(t, s) f(s, x(s)) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right)\right| \\
& \leq \int_{0}^{\sigma(T)}|G(t, s)||f(s, x(s))| \Delta s+\sum_{k=1}^{m}\left|G\left(t, t_{k}\right)\right|\left|I_{k}\left(x\left(t_{k}\right)\right)\right| \\
& \leq A M \sigma(T)+A \sum_{k=1}^{m} M_{k} .
\end{aligned}
$$

This implies that $\Phi(D)$ is bounded.

Let $x \in D$ and $t, \tilde{t} \in J_{k}$, where $k=0, \ldots, m$. We have that

$$
\begin{aligned}
& \quad|\Phi x(t)-\Phi x(\tilde{t})| \\
& \leq M \int_{0}^{\tilde{t}}|G(t, s)-G(\tilde{t}, s)| \Delta s+M \int_{\tilde{t}}^{t}|G(t, s)-G(\tilde{t}, s)| \Delta s \\
& \quad+M \int_{t}^{\sigma(T)}|G(t, s)-G(\tilde{t}, s)| \Delta s+\sum_{k=1}^{m}\left|G\left(t, t_{k}\right)-G\left(\tilde{t}, t_{k}\right)\right| M_{k} \\
& =M A \int_{0}^{\tilde{t}}\left|e_{p}(s, t)-e_{p}(s, \tilde{t})\right| \Delta s \\
& \quad+M \eta \int_{\tilde{t}}^{t}\left|e_{p}(s, t) e_{p}(\sigma(T), 0)-e_{p}(s, \tilde{t})\right| \Delta s \\
& \quad+M \eta \int_{t}^{\sigma(T)}\left|e_{p}(s, t)-e_{p}(s, \tilde{t})\right| \Delta s \\
& \quad+A \sum_{k=1}^{j-1}\left|e_{p}\left(t_{k}, t\right)-e_{p}\left(t_{k}, \tilde{t}\right)\right| M_{k} \\
& \quad+\eta \sum_{k=j}^{m}\left|e_{p}\left(t_{k}, t\right)-e_{p}\left(t_{k}, \tilde{t}\right)\right| M_{k}
\end{aligned}
$$

where $\eta=1 /\left(e_{p}(\sigma(T), 0)-1\right)$. It follows that $|\Phi x(t)-\Phi x(\tilde{t})| \rightarrow 0$ uniformly for $x \in D$ as $|t-\tilde{t}| \rightarrow 0$. So $\Phi(D)$ is quasiequicontinuous on J. By Lemma $3.2, \Phi$ is compact. This completes the proof.

Now we are in a position to establish the existence theorems for the problem (NP) by using fixed point theorems.

Theorem 3.4 Suppose that there exist positive constants $l_{k}, k=1, \ldots, m$, such that

$$
\left|I_{k}(u)-I_{k}(v)\right| \leq l_{k}|u-v| \text { for all } u, v \in \mathbb{R},
$$

and suppose also that there exists a positive constant l such that

$$
|f(t, u)-f(t, v)| \leq l|u-v| \text { for all } t \in J \text { and } u, v \in \mathbb{R} .
$$

If

$$
A\left(\sigma(T) l+\sum_{k=1}^{m} l_{k}\right)<1
$$

then the problem (NP) has a unique solution.
Proof. For any $u, v \in X$ and $t \in J$, we can easily get that

$$
|\Phi u(t)-\Phi v(t)| \leq A\left(\sigma(T) l+\sum_{k=1}^{m} l_{k}\right)\|u-v\|,
$$

and hence

$$
\|\Phi u-\Phi v\| \leq A\left(\sigma(T) l+\sum_{k=1}^{m} l_{k}\right)\|u-v\| .
$$

This means that Φ is a contraction mapping. By Banach's fixed point theorem, Φ has a unique fixed point which is the unique solution of (NP). This completes the proof.

Theorem 3.5 Suppose that there exist positive constants land $c_{k}, k=1, \ldots, m$, such that

$$
\begin{equation*}
|f(t, x)| \leq l|x| \text { for all } t \in J \text { and } x \in \mathbb{R} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{k}(x)\right| \leq c_{k} \text { for all } x \in \mathbb{R} \text { and } k=1, \ldots, m . \tag{6}
\end{equation*}
$$

If

$$
\begin{equation*}
l A \sigma(T)<1 \tag{7}
\end{equation*}
$$

then the problem (NP) has at least one solution.
Proof. Let $x \in X$ and $t \in J$. Suppose that x is a solution of $x=\mu \Phi x$ for some $\mu \in(0,1)$. Using (5) and (6), we have

$$
\begin{aligned}
|x(t)| & =\left|\mu \int_{0}^{\sigma(T)} G(t, s) f(s, x(s)) \Delta s+\mu \sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right)\right| \\
& \leq \mu \int_{0}^{\sigma(T)}|G(t, s)||f(s, x(s))| \Delta s+\mu \sum_{k=1}^{m}\left|G\left(t, t_{k}\right)\right|\left|I_{k}\left(x\left(t_{k}\right)\right)\right| \\
& \leq \mu A l\|x\| \sigma(T)+\mu A \sum_{k=1}^{m} c_{k}
\end{aligned}
$$

and hence

$$
\|x\| \leq \mu A l\|x\| \sigma(T)+\mu A \sum_{k=1}^{m} c_{k} \leq A l\|x\| \sigma(T)+A \sum_{k=1}^{m} c_{k} .
$$

Together with (7), we obtain

$$
\|x\| \leq \frac{A \sum_{k=1}^{m} c_{k}}{1-A l \sigma(T)}
$$

This implies that all solutions of $x=\mu \Phi x$ are uniformly bounded independent of $\mu \in(0,1)$. From Lemma 1.3, Φ has a fixed point. This completes the proof.

Theorem 3.6 Suppose that there exist positive constants c and $c_{k}, k=1, \ldots, m$, such that

$$
\begin{equation*}
|f(t, x)| \leq c \text { for all } t \in J \text { and } x \in \mathbb{R} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{k}(x)\right| \leq l_{k}|x| \text { for all } x \in \mathbb{R} \text { and } k=1, \ldots, m . \tag{9}
\end{equation*}
$$

If

$$
\begin{equation*}
A \sum_{k=1}^{m} l_{k}<1, \tag{10}
\end{equation*}
$$

then the problem (NP) has least one solution.

Proof. Let $x \in X$ and $t \in J$. Suppose that x is a solution of $x=\mu \Phi x$ for some $\mu \in(0,1)$. Using (8) and (9), we have

$$
\begin{aligned}
|x(t)| & =\left|\mu \int_{0}^{\sigma(T)} G(t, s) f(s, x(s)) \Delta s+\mu \sum_{k=1}^{m} G\left(t, t_{k}\right) I_{k}\left(x\left(t_{k}\right)\right)\right| \\
& \leq \mu \int_{0}^{\sigma(T)}|G(t, s)||f(s, x(s))| \Delta s+\mu \sum_{k=1}^{m}\left|G\left(t, t_{k}\right)\right|\left|I_{k}\left(x\left(t_{k}\right)\right)\right| \\
& \leq \mu A c \sigma(T)+\mu A \sum_{k=1}^{m} l_{k}\|x\|,
\end{aligned}
$$

and hence

$$
\|x\| \leq \mu A c \sigma(T)+\mu A \sum_{k=1}^{m} l_{k}\|x\| \leq A c \sigma(T)+A \sum_{k=1}^{m} l_{k}\|x\| .
$$

Together with (10), we obtain that

$$
\|x\| \leq \frac{A c \sigma(T)}{1-A \sum_{k=1}^{m} l_{k}}
$$

This implies that all solutions of $x=\mu \Phi x$ are uniformly bounded independent of $\mu \in(0,1)$. Hence it follows from Lemma 1.3 that Φ has a fixed point. So the proof is complete.

When all impulsive functions are linear, we have the following existence result.

Theorem 3.7 For each $k=1, \ldots, m$, let $I_{k}(x)=l_{k} x$, where l_{k} is a constant. Suppose that the following conditions hold:
(a) $|f(t, x)| \leq c$ for all $(t, x) \in J \times \mathbb{R}$, for some positive constant c,
(b) $\prod_{k=1}^{m} b_{k} \neq e_{p}(\sigma(T), 0)$, where $b_{k}=l_{k}+1$.

Then the problem (NP) has at least one solution.
Proof. In this case, the problem (NP) can be rewritten as

$$
\begin{align*}
& x^{\Delta}+p(t) x^{\sigma}=f(t, x), t \in[0, T]_{\mathbb{T}}, t \neq t_{k}, k=1, \ldots, m, \\
& x\left(t_{k}+\right)=b_{k} x\left(t_{k}\right), k=1, \ldots, m, \tag{11}\\
& x(0)=x(\sigma(T)) .
\end{align*}
$$

We first consider the special case: $b_{k_{0}}=0$ for some $1 \leq k_{0} \leq m$. Let $y(t)=$ $e_{p}(t, 0) x(t)$. Then

$$
\begin{align*}
& y^{\Delta}(t)=e_{p}(t, 0) f\left(t, e_{p}(0, t) y(t)\right), \quad t \in[0, T]_{\mathbb{T}}, t \neq t_{k}, k=1, \ldots, m, \\
& y\left(t_{k}+\right)=b_{k} y\left(t_{k}\right), \quad k \neq k_{0}, \tag{12}\\
& y\left(t_{k_{0}}+\right)=0 \\
& y(0)=y(\sigma(T))
\end{align*}
$$

We claim that the initial value problem

$$
\begin{align*}
& y^{\Delta}(t)=e_{p}(t, 0) f\left(t, e_{p}(0, t) y(t)\right), \quad t \in J_{k_{0}} \\
& y\left(t_{k_{0}}+\right)=0, \tag{13}
\end{align*}
$$

has at least one solution. To show this, we define an operator $L_{k_{0}}: C\left(J_{k_{0}}\right) \rightarrow$ $C\left(J_{k_{0}}\right)$ by

$$
\left(L_{k_{0}} y\right)(t)=\int_{t_{k_{0}}}^{t} e_{p}(s, 0) f\left(s, e_{p}(0, s) y(s)\right) \Delta s
$$

so that the fixed points of $L_{k_{0}}$ are solutions to (13). Then $L_{k_{0}}$ is compact. To see this, let $D \subseteq C\left(J_{k_{0}}\right)$ be a bounded set. For any $y \in D$ and $t \in J_{k_{0}}$, we have

$$
\begin{aligned}
\left|\left(L_{k_{0}} y\right)(t)\right| & =\left|\int_{t_{k_{0}}}^{t} e_{p}(s, 0) f\left(s, e_{p}(0, s) y(s)\right) \Delta s\right| \\
& \leq \int_{t_{k_{0}}}^{t}\left|e_{p}(s, 0)\right|\left|f\left(s, e_{p}(0, s) y(s)\right)\right| \Delta s \\
& \leq c e_{p}(\sigma(T), 0)\left(t_{k_{0}+1}-t_{k_{0}}\right) .
\end{aligned}
$$

This implies that $L_{k_{0}}(D)$ is uniformly bounded. Also, if $t, \tilde{t} \in J_{k_{0}}$ and $y \in D$, then

$$
\left|\left(L_{k_{0}} y\right)(t)-\left(L_{k_{0}} y\right)(\tilde{t})\right| \leq c e_{p}(\sigma(T), 0)|t-\tilde{t}| \rightarrow 0
$$

uniformly for $y \in D$ as $|t-\tilde{t}| \rightarrow 0$. This implies that $L_{k_{0}}(D)$ is equicontinuous on $J_{k_{0}}$. Hence $L_{k_{0}}$ is compact.

Let $\mu \in(0,1)$. We consider the equation

$$
\begin{equation*}
y=\mu L_{k_{0}} y . \tag{14}
\end{equation*}
$$

Suppose that $y \in C\left(J_{k_{0}}\right)$ is a solution of (14). Then

$$
\begin{aligned}
|y(t)| & =\left|\mu \int_{t_{k_{0}}}^{t} e_{p}(s, 0) f\left(s, e_{p}(0, s) y(s)\right) \Delta s\right| \\
& \leq \int_{t_{k_{0}}}^{t}\left|e_{p}(s, 0)\right|\left|f\left(s, e_{p}(0, s) y(s)\right)\right| \Delta s \\
& \leq c e_{p}(\sigma(T), 0) \sigma(T),
\end{aligned}
$$

and hence $\|y\| \leq c e_{p}(\sigma(T), 0) \sigma(T)$. It follows that all solutions of $y=\mu L_{k_{0}} y$ are bounded independent of $\mu \in(0,1)$. From Lemma 1.3, $L_{k_{0}}$ has a fixed point. Hence (13) has at least one solution, saying $y_{k_{0}}$, on $J_{k_{0}}$. This determines the value of $y_{k_{0}}\left(t_{k_{0}+1}\right)$ that we use as the initial value for the following problem

$$
\begin{align*}
& y^{\Delta}(t)=e_{p}(t, 0) f\left(t, e_{p}(0, t) y(t)\right), \quad t \in J_{k_{0}+1}, \\
& y\left(t_{k_{0}+1}+\right)=b_{k_{0}+1} y_{k_{0}}\left(t_{k_{0}+1}\right) . \tag{15}
\end{align*}
$$

Similarly, we can get a solution $y_{k_{0}+1}$ on $J_{k_{0}+1}$ for (15). Continuing this process, we know that the initial value problem

$$
\begin{aligned}
& y^{\Delta}(t)=e_{p}(t, 0) f\left(t, e_{p}(0, t) y(t)\right), \quad t \in J_{j} \\
& y\left(t_{j}+\right)=b_{j} y_{j-1}\left(t_{j}\right)
\end{aligned}
$$

has a solution y_{j} on J_{j} for each $j=k_{0}+2, \ldots, m$. Also, the initial value problem

$$
\begin{aligned}
& y^{\Delta}(t)=e_{p}(t, 0) f\left(t, e_{p}(0, t) y(t)\right), \quad t \in J_{0}, \\
& y(0)=y_{m}(\sigma(T))
\end{aligned}
$$

has a solution y_{0} on J_{0}. As before, we know that the initial value problem

$$
\begin{aligned}
& y^{\Delta}(t)=e_{p}(t, 0) f\left(t, e_{p}(0, t) y(t)\right), \quad t \in J_{j}, \\
& y\left(t_{j}+\right)=b_{j} y_{j-1}\left(t_{j}\right) .
\end{aligned}
$$

has a solution y_{j} on J_{j} for each $j=1, \ldots, k_{0}-1$.
Let

$$
y=\left\{\begin{array}{cc}
y_{0}, & \text { on } J_{0} \\
y_{1}, & \text { on } J_{1}, \\
\vdots \\
y_{m}, & \text { on } J_{m}
\end{array}\right.
$$

It is easy to see that y is a solution of (12). So (NP) has at least one solution.

Now we consider the only other case: $b_{k} \neq 0$ for all $k=1, \ldots, m$. Let $x(t)$ be any solution of (11). Set

$$
y(t)=x(t) \prod_{0 \leq t_{k}<t} b_{k}^{-1} .
$$

For all $k=1, \ldots, m$, we have

$$
\begin{aligned}
& y\left(t_{k}+\right)=b_{k} x\left(t_{k}\right) \prod_{0 \leq t_{i} \leq t_{k}} b_{i}^{-1}=x\left(t_{k}\right) \prod_{0 \leq t_{i}<t_{k}} b_{i}^{-1}=y\left(t_{k}\right), \\
& y\left(t_{k}-\right)=x\left(t_{k}\right) \prod_{0 \leq t_{i}<t_{k}} b_{k}^{-1}=y\left(t_{k}\right) .
\end{aligned}
$$

This shows that $y(t)$ is continuous on J. Furthmore, $y(t)$ satisfies

$$
\begin{align*}
& y^{\Delta}(t)+p(t) y(\sigma(t))=F(t, y(t)), \quad t \in[0, T]_{\mathbb{T}} \\
& y(0)=y(\sigma(T)) \prod_{k=1}^{m} b_{k} \tag{16}
\end{align*}
$$

where

$$
F(t, y(t))=f\left(t, y(t) \prod_{0 \leq t_{k}<t} b_{k}\right) \prod_{0 \leq t_{k}<t} b_{k}^{-1} .
$$

It follows that (16) has a solution if and only if the integral equation

$$
y(t)=\int_{0}^{\sigma(T)} \tilde{G}(t, s) F(s, y(s)) \Delta s
$$

is solvable. Here,

$$
\tilde{G}(t, s)= \begin{cases}\eta e_{p}(\sigma(T), 0) e_{p}(s, t), & 0 \leq s \leq t \leq \sigma(T) \\ \eta \prod_{k=1}^{m} b_{k} e_{p}(s, t), & 0 \leq t<s \leq \sigma(T),\end{cases}
$$

where

$$
\eta=\frac{1}{e_{p}(\sigma(T), 0)-\prod_{k=1}^{m} b_{k}}
$$

Define the operator $B: C(J) \rightarrow C(J)$ by

$$
B y=\int_{0}^{\sigma(T)} \tilde{G}(t, s) F(s, y(s)) \Delta s
$$

It is easy to show that B is compact. Let $\mu \in(0,1)$ and $y \in C(J)$. Suppose that y is a solution of

$$
\begin{equation*}
y=\mu B y \tag{17}
\end{equation*}
$$

on J. Then

$$
|y(t)| \leq \int_{0}^{\sigma(T)}|\tilde{G}(t, s)||F(s, y(s))| \Delta s \leq c_{1} c_{2} \sigma(T)
$$

where

$$
\begin{aligned}
& c_{1}=\sup \left\{c \prod_{0 \leq t_{k}<t}\left|b_{k}\right|^{-1}: t \in J\right\}, \\
& c_{2}=\eta e_{p}(\sigma(T), 0) \sup \left\{\prod_{k=1}^{m} b_{k}, 1\right\} .
\end{aligned}
$$

Hence $\|y\| \leq c_{1} c_{2}$. This implies that all the solutions of (17) are bounded independent of $\mu \in(0,1)$. It follows from Lemma 1.3 that B has a fixed point. Therefore (11) has at least one solution.

Theorem 3.8 Suppose that the following conditions hold:
(a) $\lim _{|x| \rightarrow \infty} \frac{f(t, x)}{x}=0$ uniformly for $t \in J$,
(b) $\lim _{|x| \rightarrow \infty} \frac{I_{k}(x)}{x}=0$ for all $k=1, \ldots, m$.

Then the problem (NP) has at least one solution.
Proof. Let $H \Phi=\{x \in X: x=\mu \Phi x$ for some $\mu \in(0,1)\}$. Then $H \Phi$ is bounded. Indeed, if $H \Phi$ is unbounded, then there exist sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X and $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in $(0,1)$ such that $\left\|x_{n}\right\| \geq n$ and

$$
\begin{aligned}
& x_{n}^{\triangle}(t)+p(t) x_{n}(\sigma(t))=\mu_{n} f\left(t, x_{n}(t)\right), \quad t \in[0, T]_{\mathbb{T}}, t \neq t_{k}, k=1, \ldots, m, \\
& x_{n}\left(t_{k}+\right)-x_{n}\left(t_{k}-\right)=\mu_{n} I_{k}\left(x_{n}\left(t_{k}\right)\right), \quad k=1, \ldots, m, \\
& x_{n}(0)=x_{n}(\sigma(T)) .
\end{aligned}
$$

Now we let $v_{n}=x_{n} /\left\|x_{n}\right\|$. Then $\left\|v_{n}\right\|=1$ and v_{n} satisfies

$$
\begin{aligned}
& v_{n}^{\triangle}(t)+p(t) v_{n}(\sigma(t))=g_{n}(t), \quad t \in[0, T]_{\mathbb{T}}, \quad t \neq t_{k}, k=1, \ldots, m, \\
& v_{n}\left(t_{k}+\right)-v_{n}\left(t_{k}-\right)=\theta_{n, k}, \quad k=1, \ldots, m, \\
& v_{n}(0)=v_{n}(\sigma(T)),
\end{aligned}
$$

where

$$
g_{n}(t)=\frac{\mu_{n} f\left(t, x_{n}(t)\right)}{\left\|x_{n}\right\|} \text { and } \theta_{n, k}=\frac{\mu_{n} I_{k}\left(x_{n}\left(t_{k}\right)\right)}{\left\|x_{n}\right\|} .
$$

By Lemma 2.1, we get

$$
v_{n}(t)=\int_{0}^{\sigma(T)} G(t, s) g_{n}(s) \Delta s+\sum_{k=1}^{m} G\left(t, t_{k}\right) \theta_{n, k}, \quad t \in J .
$$

From assumptions (a) and (b), we have

$$
\left|g_{n}(t)\right| \leq \frac{\left|f\left(t, x_{n}(t)\right)\right|}{\left\|x_{n}\right\|} \rightarrow 0
$$

uniformly for $t \in J$ and

$$
\left|\theta_{n, k}\right| \leq \frac{\left|I_{k}\left(x_{n}\left(t_{k}\right)\right)\right|}{\left\|x_{n}\right\|} \rightarrow 0, k=1, \ldots, m
$$

as $n \rightarrow \infty$, so that

$$
\left|v_{n}(t)\right| \leq A\left\{\int_{0}^{\sigma(T)}\left|g_{n}(s)\right| \Delta s+\sum_{k=1}^{m}\left|\theta_{n, k}\right|\right\} \rightarrow 0
$$

uniformly for $t \in J$ as $n \rightarrow \infty$. Hence $\left\|v_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, which contradicts the fact that $\left\|v_{n}\right\|=1$. From Lemma 1.3, the problem (NP) has at least one solution. Therefore the proof is complete.

The following corollaries can be immediately obtained from Theorem 3.8.
Corollary 3.9 (Bounded case) Assume that the nonlinearity f is bounded and that the impulsive functions $I_{k}, k=1, \ldots, m$, are bounded. Then the nonlinear problem (NP) has at least one solution.

Corollary 3.10 (Sublinear growth) Suppose that there exist $a \in P C, b \in \mathbb{R}$ and $\alpha \in[0,1)$ such that

$$
|f(t, x)| \leq a(t)+b|x|^{\alpha} \text { for all } t \in J \text { and } x \in \mathbb{R}
$$

and suppose also that there exist positive constants $a_{k}, b_{k} \in \mathbb{R}$, and $\alpha_{k} \in[0,1)$ such that

$$
\left|I_{k}(x)\right| \leq a_{k}+b_{k}|x|^{\alpha_{k}} \text { for all } x \in \mathbb{R} \text { and } k=1, \ldots, m
$$

Then the problem (NP) has at least one solution.

4 Examples

Example 5.1 Let $\mathbb{T}=[0,1] \cup \mathbb{Z}$. We consider the following PBVP on \mathbb{T}

$$
\begin{aligned}
& x^{\Delta}+(t+1) x^{\sigma}(t)=\frac{x}{10 e^{t}}, \quad t \in[0,4]_{\mathbb{T}}, t \neq \frac{1}{2}, \\
& x\left(\frac{1}{2}+\right)-x\left(\frac{1}{2}-\right)=\frac{1}{4} \sin \left(x\left(\frac{1}{2}-\right)\right), \\
& x(0)=x(\sigma(4)) .
\end{aligned}
$$

Let

$$
p(t)=t+1, \quad f(t, x)=\frac{x}{10 e^{t}}, \text { and } I(x)=\frac{1}{4} \sin x .
$$

It is easy to see that

$$
|f(t, u)-f(t, v)| \leq \frac{1}{10}|u-v|, \text { for all } t \in[0, \sigma(4)]_{\mathbb{T}} \text { and } u, v \in \mathbb{R}
$$

and

$$
|I(u)-I(v)| \leq \frac{1}{4}|u-v| \text { for all } u, v \in \mathbb{R}
$$

Also, by a simple computation, we get $A=360 e^{\frac{3}{2}} /\left(360 e^{\frac{3}{2}}-1\right)$ and hence

$$
A\left[\sigma(4) \frac{1}{10}+\frac{1}{4}\right]=\frac{3}{4} A<1
$$

Hence by Theorem 3.4 the PBVP has at least one solution.
Example 5.2 Let $\mathbb{T}=\left[0, \frac{1}{2}\right] \cup 2^{\mathbb{N}_{0}}$. We consider the following PBVP on \mathbb{T}

$$
\begin{aligned}
& x^{\Delta}+p(t) x^{\sigma}(t)=f(t, x), \quad t \in[0,4]_{\mathbb{T}}, t \neq \frac{1}{4}, \\
& x\left(\frac{1}{4}+\right)-x\left(\frac{1}{4}-\right)=I\left(x\left(\frac{1}{4}-\right)\right), \\
& x(0)=x(\sigma(4)),
\end{aligned}
$$

where

$$
p(t)=\left\{\begin{array}{ll}
t, & t \in\left[0, \frac{1}{2}\right], \\
1, & t \in 2^{\mathbb{N}_{0}},
\end{array}, \quad f(t, x)=\frac{2 \sin t}{x^{2}+1}, \quad \text { and } I(x)=\frac{1}{24} x .\right.
$$

It is easy to see that

$$
|f(t, x)| \leq 2 \text { for all } t \in[0, \sigma(4)]_{\mathbb{T}} \text { and } x \in \mathbb{R},
$$

and

$$
|I(x)| \leq \frac{1}{24}|x| \text { for all } x \in \mathbb{R} .
$$

By a simple computation, we get $A=75 e^{\frac{1}{8}} /\left(75 e^{\frac{1}{8}}-2\right)$ and so $A / 24<1$. Then by Theorem 3.6, the PBVP has at least one solution.

Example 5.3 Let $\mathbb{T}=\mathbb{N}_{0}^{2} \cup[6,8]$. We consider the following PBVP on \mathbb{T}

$$
\begin{aligned}
& x^{\Delta}+p(t) x(\sigma(t))=f(t, x), \quad t \in[0,8]_{\mathbb{T}}, t \neq 7, \\
& x(7+)-x(7-)=I(x(7-)), \\
& x(0)=x(\sigma(8)),
\end{aligned}
$$

where

$$
p(t)=\left\{\begin{array}{ll}
1, & t \in\{0,1,4\}, \\
t, & t \in[6,8],
\end{array} \quad, \quad f(t, x)=\frac{x}{t+18}, \text { and } I(x)=\sin x .\right.
$$

It is easy to see that

$$
|f(t, x)| \leq \frac{1}{18}|x| \text { for all } t \in[0, \sigma(8)]_{\mathbb{T}} \text { and } x \in \mathbb{R}
$$

and

$$
|I(x)| \leq 1 \text { for all } x \in \mathbb{R}
$$

Also, by a simple computation, we get $A=216 e^{14} /\left(216 e^{14}-1\right)$ and so $A \sigma(8) / 18=A / 2<1$. Then by Theorem 3.5, the PBVP has at least one solution.

Example 5.4 Let \mathbb{T} be a time scale and let $0, T \in \mathbb{T}$. We consider the following PBVP on \mathbb{T}

$$
\begin{aligned}
& x^{\Delta}+x^{\sigma}=e^{\frac{1}{x}} \sin t, \quad t \in[0, T]_{\mathbb{T}}, \quad t \neq t_{k}, k=1, \ldots, m, \\
& x\left(t_{k}+\right)-x\left(t_{k}-\right)=x\left(t_{k}-\right)^{\frac{1}{2}}, \quad k=1, \ldots, m, \\
& x(0)=x(\sigma(T)),
\end{aligned}
$$

where $t_{k} \in(0, T)_{\mathbb{T}}$ are right-dense for all $k=1, \ldots, m$. Let $f(t, x)=e^{\frac{1}{x}} \sin t$ and $I_{k}(x)=x^{\frac{1}{2}}$. Then it is easy to see that

$$
\lim _{|x| \rightarrow \infty} \frac{f(t, x)}{x}=0 \text { and } \lim _{|x| \rightarrow \infty} \frac{I_{k}(x)}{x}=0 .
$$

Hence it follows from Theorem 3.8 that the PBVP has least one solution .

References

[1] R.P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999) 3-22.
[2] M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser, Boston, 2001.
[3] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003.
[4] F. Geng, Y. Xu, and D. Zhu Periodic boundary value problems for first-order impulsive dynamic equations on time scales, Nonlinear Anal. 69 (2008) 40744087.
[5] D.B. Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales, Comput. Math. Appl. 56 (2008) 1496-1504.
[6] J.J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. 205 (1997) 423-433.
[7] J. Li, J.J. Nieto, and J. Shen, Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl. 325 (2007) 226-236.
[8] A. Cabada, Extremal solutions and Green's functions of higher order periodic boundary value problems in time scales, J. Math. Anal. Appl. 290 (2004) 35-54.
[9] Q. Dai and C.C. Tisdell, Existence of solutions to first-order dynamic boundary valued problems, Int. J. Differ. Equ. 1 (2006) 1-17.
[10] J.P. Sun and W.T. Li, Existence of solutions to nonlinear first-order PBVPs on time scales, Nonlinear Anal. 67 (2007) 883-888.
[11] J.P. Sun and W.T. Li, Existence and multiplicity of positive solutions to nonlinear first-order PBVPs on time scales, Comput. Math. Appl. 54 (2007) 861-871.
[12] D.D. Bainov and P.S. Simeonov, Systems with impulse effect: stability theory and applications, Horwood, Chichester, 1989.
[13] D.D. Bainov and P.S. Simeonov, Impulsive differential equations: periodic solutions and applications, Longman Scientific and Technical, Harlow, 1993.
[14] D. Franco and J.J. Nieto, Maximum principles for periodic impulsive first order problems, J. Comput. Appl. Math. 88 (1998) 144-159.
[15] D. Franco, J.J. Nieto, E. Liz, and Y.V. Rogovchenko, A contribution to the study of functional differential equations with impulses, Math. Nachr. 218 (2000) 49-60.
[16] J.J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Lett. 15 (2002) 489-493.
[17] J.J. Nieto, Periodic boundary value problems for first order impulsive ordinary differential equations, Nonlinear Appl. 51 (2002) 1223-1232.
[18] Y. Liu, Positive solutions of periodic boundary value problems for nonlinear first-order impulsive differential equations, Nonlinear Anal. 70 (2009) 21062122.
[19] Z. He and X. Zhang, Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions, Applied. Math. Comput. 156 (2004) 605-620.
[20] D.R. Smart, Fixed point theorems, Cambridge University Press, Cambridge, 1980.

無研發成果推廣資料

98 年度專題研究計畫研究成果彙整表

計畫主持人：符聖珍
計畫編號：98－2115－M－004－001－
計畫名稱：一個反應擴散方程系統之行波解的穩定性研究

				量化			備註（質化說
	成果項		實際已達成數（被接受或已發表）	$\begin{aligned} & \text { 預期總達成 } \\ & \text { 數(含寞際已 } \\ & \text { 逢數) } \end{aligned}$	本計畫實際貢獻百分比	單位	明：如數個計畫共同成果，成果列為該期刊之封面故事．．．等 ）
		期刊論文	0	0	100\％		
		研究報告／技術報告	0	0	100\％	篇	
	論文者作	研討會論文	0	0	100\％		
		專書	0	0	100\％		
		申請中件數	0	0	100\％	件	
		已獲得件數	0	0	100\％	件	
國内		件數	0	0	100\％	件	
	技術移韩	權利金	0	0	100\％	千元	
		碩士生	0	0	100\％		
	参與計畫人力	博士生	0	0	100\％		
	（本國籍）	博士後研究員	0	0	100\％		
		專任助理	0	0	100\％		
		期刊論文	0	1	100\％	篇	此項成果已投稿於國外學術期刊審查中
	論文著作	研究報告／技術報告	0	0	100\％		
		研討會論文	0	0	100\％		
		專書	0	0	100\％	章／本	
		申請中件數	0	0	100\％	件	
國外	表利	已獲得件數	0	0	100\％	件	
	技術	件數	0	0	100\％	件	
	技活移轉	權利金	0	0	100\％	千元	
		碩士生	0	1	100\％		
	参與計畫人力	博士生	0	0	100\％		
	（外國籍）	博士後研究員	0	0	100\％	人次	
		專任助理	0	0	100\％		

其他成果 （無法以量化表達之成果如辦理學術活動，獲得獎項，重要國際合作，研究成果國際影響力及其他協助產業技術發展之具體效益事項等，請以文字敘述填列。）		無			
成果項目				量化	名稱或内容性質簡述
科 教 處 計 畫 加 填 項 目	測驗工具（含質性與	量性）	0		
	課程模組		0		
	電䐉及網路系統或		0		
	教材		0		
	舉辨之活動競賽		0		
	研討會／工作坊		0		
	電子報，網站		0		
	計畫成果推廣之參與	（閱聽）人數	0		

國科會補助專題研究計畫成果報告自評表

請就研究内容與原計畫相符程度，達成預期目標情况，研究成果之學術或應用價值（簡要敘述成果所代表之意義，價值，影響或進一步發展之可能性），是否適合在學術期刊發表或申請專利，主要發現或其他有關價值等，作一綜合評估。

1．請就研究内容與原計畫相符程度，達成預期目標情況作一綜合評估
■達成目標
\square 未達成目標（請說明，以 100 字為限）\square 實驗失敗因故實驗中斷
\square 其他原因說明：
2．研究成果在學術期刊發表或申請專利等情形：
論文：已發表未發表之文稿 \square 撰寫中 \square 無

專利： \square已獲得申請中技轉：\square 已技轉 \square 洽談中 \square 無其他：（以 100 字為限）
3．請依學術成就，技術創新，社會影響等方面，評估研究成果之學術或應用價值（簡要敘述成果所代表之意義，價值，影響或進一步發展之可能性）（以 500 字為限）

[^0]: * This work is partially supported by National Science Council of the Republic of China under the contract 98-2115-M-004-001.
 Corresponding author: Sheng-Chen Fu.
 Email addresses: fu@nccu.edu.tw (Sheng-Chen Fu); 96751003@nccu.edu.tw (YiChang Liang).

