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ON THE SHARING VALUES AND SMALL FUNCTIONS OF
MEROMORPHIC FUNCTIONS

TEN-GING CHEN

1. Introduction

A well-known result by Picard [?] says that any non-constant entire function
f(z) can omit at most one finite complex value, which we call a Picard exceptional
value of f(z). Nevanlinna generalized the idea of omitting values, and define now
called the Nevanlinna deficiency δ(a, f) to measure the degree of a meromorphic
function f(z) “misses” the value a. We say that an extended complex value a is
a deficient value of f(z) if δ(a, f) > 0. Under this terminology, if a is a Picard
exceptional value of f(z), then δ(a, f) = 1.

Yang [?, ?] proved that any non-constant rational function f(z) has exactly one
deficient value a. Also, we can easily calculate the Nevanlinna deficiency δ(a, f) for
the corresponding deficient value a. For completeness, we will state Yang’s results
in Section 2.

To construct a meromorphic function with two deficient values, our approach is as
follows. First, we consider a meromorphic function g(z) with two Piacrd exceptional
values a and b. Then, take a polynomial P (z), and consider the meromorphic
function f(z) = P (g(z)). We will show that f(z) has at most two deficient values,
and the only possible deficient values are P (a) and P (b). If g(z) is of finite order,
both P (a) and P (b) are deficient values of f(z), and the corresponding deficiencies
can be computed explicitly. While a polynomial P (z) is fixed, we define ν(α) to be
the multiplicity of the zero of P (z)−P (α) at z = α if α is a finite complex number,
and ν(∞) to be the degree of P (z).

Now, given a non-constant meromorphic function g(z) with two Picard excep-
tional values 0 and ∞, then it is well-known that g(z) = eh(z), where h(z) is an
entire function. Moreover, if g(z) is of finite order, then h(z) must be a non-constant
polynomial [?]. In this case, we have the following theorem:

Theorem A. Let h(z) be a non-constant polynomial and P (z) = anzn+an−1z
n−1+

· · · + akzk be a non-constant polynomial, where k ≥ 0 and ak, an are non-zero
constants. Let f(z) = P (eh(z)). We have

(i) If k ≥ 1, then 0 and ∞ are the only two deficient values of f(z). Moreover,
δ(0, f) = ν(0)

n = k
n and δ(∞, f) = ν(∞)

n = 1 .
(ii) If k = 0, then a0 and ∞ are the only two deficient values of f(z). Moreover,

δ(a0, f) = ν(0)
n and δ(∞, f) = ν(∞)

n = 1.

In general, we have the following result.
1
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Theorem B. Let g(z) be a non-constant meromorphic function of finite order, such
that g(z) has two Picard exceptional values a and b. Let P (z) be a non-constant
polynomial of degree n. We have

(i) If P (a) = P (b), then P (a) is the only two deficient value of P (g). Moreover,
δ(P (a), P (g)) = ν(a)+ν(b)

n .
(ii) If P (a) 6= P (b) and a, b are finite, then P (a) and P (b) are the only two

deficient values of P (g). Moreover, δ(P (a), P (g)) = ν(a)
n and δ(P (b), P (g)) =

ν(b)
n .

(iii) If a is finite and b = ∞, then P (a) and ∞ are the only deficient values of
P (g). Moreover, δ(P (a), P (g)) = ν(a)

n and δ(∞, P (g)) = ν(∞)
n = 1.

When g(z) is of infinite order, we can get similar but somewhat weaker results
as Theorem A and B, which will be stated in Section 3 and 4.

The proofs of Theorem A and B, given in Section 3 and 4, are based on the
theory of value distribution. We will assume the reader is familiar with the basic
notations and fundamental results of Nevanlinna’s theory of meromorphic functions,
as found in [?]. In particular, we will denote by S(r, f) any quantity satisfying
S(r, f) = o(T (r, f)), as r →∞, possibly outside a set E of finite linear measure.

2. The deficient values of rational functions

Let f(z) be a non-constant meromorphic function and a ∈ C∞. First, we define
the Nevanlinna deficiency δ(a, f) to measure the degree of a meromorphic function
f(z) “misses” the value a.

Definition. Let f(z) be a non-constant meromorphic function and a ∈ C∞. The
deficiency of a with respect to f(z) is defined to be

δ(a, f) = lim
r→∞

m(r, 1
f−a )

T (r, f)

= 1− lim
r→∞

N(r, 1
f−a )

T (r, f)
.

If δ(a, f) > 0, then a is called a deficient value of f(z).

Clearly, by the definition, 0 ≤ δ(a, f) ≤ 1. If δ(a, f) is much more close to 1,
this means N(r, 1

f−a ) much smaller than T (r, f). In other words, the lack of f(z)
at a is much more acuter. In general, it is quite difficult to find the deficient values
of an arbitrary meromorphic function. However, for rational function, C. C. Yang
[?] proved the following.

Theorem 1. Let f(z) be a non-constant rational function defined by

f(z) =
apz

p + ap−1z
p−1 + · · ·+ a0

bqzq + bq−1zq−1 + · · ·+ b0
,

where apz
p +ap−1z

p−1 + · · ·+a0 and bqz
q +bq−1z

q−1 + · · ·+b0 are relatively prime.
Then

(i) N(r, f) = q log r and N(r, 1
f ) = p log r.

(ii) m(r, f) =
{

(p− q) log r + O(1) if p > q
O(1) if p ≤ q
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(iii) N(r, 1
f−a ) =





max{p, q} log r if p 6= q
p log r if p = q and ap 6= abq

k log r if p = q and ap = abq for some 0 ≤ k ≤ p− 1,
where a is a non-zero complex number.

(iv) T (r, f) = max{p, q} log r.

It follows from Theorem ??, we can completely classify all deficient values and
their corresponding deficiency for rational functions as follows:

Corollary 1. If f(z) is a non-constant rational function, then f(z) has only one
deficient value f(∞). More precisely, we have the following cases:

(i) If p > q, then ∞ is the only deficient value of f(z) and δ(∞, f) = 1− q
p .

(ii) If p < q, then 0 is the only deficient value of f(z) and δ(0, f) = 1− p
q .

(iii) If p = q, then ap

bq
is the only deficient value of f(z) and δ(ap

bq
, f) = 1 − k

p ,
where k is the largest nonnegative integer j such that aj 6= abj.

3. The Proof of Theorem A

Let g(z) be a non-constant meromorphic function with two Picard exceptional
values 0 and ∞, so g(z) = eh(z), where h(z) is an entire function. In this section,
we study the deficient values and deficiencies of P (g), where P (z) is a non-constant
polynomial. First, we establish some lemmas.

Lemma 1. Let h(z) be a non-constant entire function and f(z) = a+beh(z), where
a and b are non-zero complex numbers. Then

m(r,
1
f

) = S(r, eh).

Proof . By the Nevanlinna’s second fundamental theorem,

T (r, 1
f ) = T (r, f) + O(1)

≤ N(r, 1
f ) + N(r, 1

f−a ) + N(r, f) + S(r, f)
≤ N(r, 1

f ) + N(r, 1
beh ) + S(r, f)

≤ N(r, 1
f ) + S(r, f).

Hence,

m(r,
1
f

) = T (r,
1
f

)−N(r,
1
f

) = S(r, f) = S(r, eh).

❑

Lemma 2. Let h(z) be a non-constant entire function and P (z) = anzn+an−1z
n−1+

· · · + a0 be a polynomial, where a0 and an are non-zero complex numbers. If
f(z) = P (eh(z)), then

m(r,
1
f

) = S(r, eh).

Proof . Write P (z) = c
∏n

j=1(z − αj). Clearly, αj 6= 0 for all 1 ≤ j ≤ n. By
Lemma ??, we have

m(r, 1
f ) = m(r, 1

c
Qn

j=1(e
h−αj)

)

≤ ∑n
j=1 m(r, 1

eh−αj
) + O(1)

= S(r, eh).

❑
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In order to find m(r, 1
P (eh)

), we need the following fact [?] about the characteristic
function of polynomial in a meromorphic function.

Theorem 2. Let g(z) be a non-constant meromorphic function and P (z) = anzn +
· · ·+ a0, where a0, . . . , an are small functions of g(z). Then

T (r, P (g)) = nT (r, g) + S(r, g).

In particular, if g(z) is of finite order, so is P (g).

Now, we can express m(r, 1
P (eh)

) in terms of m(r, 1
eh ), which is fundamental to

the proofs of Theorem A and B.

Theorem 3. Let h(z) be a non-constant entire function and P (z) = anzn +
an−1z

n−1 + · · · + akzk be a polynomial, where k ≥ 0 and ak, an are non-zero
constants. If f(z) = P (eh(z)), then

m(r,
1
f

) = k m(r,
1
eh

) + S(r, eh).

Proof . Write P (z) = zkQ(z) and Q(z) = c
∏n−k

j=1 (z − αj), where αj 6= 0 for all
1 ≤ j ≤ n− k. Then, by Lemma ?? and Theorem ??,

T (r, P (eh)) = T (r, 1
P (eh)

) + O(1)
= N(r, 1

P (eh)
) + m(r, 1

P (eh)
) + O(1)

= N(r, 1
Q(eh)

) + m(r, 1
P (eh)

) + O(1)
≤ ∑n−k

j=1 N(r, 1
eh−αj

) + m(r, 1
P (eh)

) + O(1)

≤ ∑n−k
j=1 N(r, 1

eh−αj
) + k m(r, 1

eh ) + m(r, 1
Q(eh)

) + O(1)

≤ ∑n−k
j=1 N(r, 1

eh−αj
) + k m(r, 1

eh ) + S(r, eh)

≤ ∑n−k
j=1 T (r, 1

eh−αj
) + k T (r, 1

eh ) + S(r, eh)
= nT (r, eh) + S(r, eh)
= T (r, P (eh)) + S(r, eh).

Therefore, we have equality everywhere. In particular,

m(r,
1
f

) = k m(r,
1
eh

) + S(r, eh).

❑
Now, we are ready to prove Theorem A.

Theorem A. Let h(z) be a non-constant polynomial and P (z) = anzn+an−1z
n−1+

· · · + akzk be a non-constant polynomial, where k ≥ 0 and ak, an are non-zero
constants. Let f(z) = P (eh(z)). We have

(i) If k ≥ 1, then 0 and ∞ are the only two deficient values of f(z). Moreover,
δ(0, f) = ν(0)

n = k
n and δ(∞, f) = ν(∞)

n = 1 .
(ii) If k = 0, then a0 and ∞ are the only two deficient values of f(z). Moreover,

δ(a0, f) = ν(0)
n and δ(∞, f) = ν(∞)

n = 1.

Proof . Note that h(z) is a polynomial, eh is of finite order. We have S(r, eh) =
o(T (r, eh)) as r → ∞. Clearly, in any case, ∞ is a deficient value of f(z) and
δ(∞, f) = ν(∞)

n = 1.
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For k ≥ 1, we have ν(0) = k and, by Theorem ??,

δ(0, f) = lim
r→∞

m(r, 1
f )

T (r, f)

= lim
r→∞

km(r, 1
eh ) + S(r, eh)

nT (r, eh) + S(r, eh)
= k

n .

On the other hand, for any a 6= 0, by Lemma ??, we have

δ(a, f) = lim
r→∞

m(r, 1
f−a )

T (r, f)

= lim
r→∞

S(r, eh)
nT (r, eh) + S(r, eh)

= 0.

Hence, 0 and ∞ are the only two deficient values of f(z) and δ(0, f) = k
n , δ(∞, f) =

1. This proves (i).
For k = 0, we can write P (z)− a0 = anzn + an−1z

n−1 + · · ·+ alz
l, where al 6= 0

and ν(0) = l. As above, we have

δ(a0, f) = lim
r→∞

m(r, 1
f−a0

)

T (r, f)

= lim
r→∞

lm(r, 1
eh ) + S(r, eh)

nT (r, eh) + S(r, eh)
= l

n .

Moreover, for any a 6= a0, by Lemma ??, we have

δ(a, f) = lim
r→∞

m(r, 1
f−a )

T (r, f)

= lim
r→∞

S(r, eh)
nT (r, eh) + S(r, eh)

= 0.

Therefore, a0 and ∞ are the only two deficient values of f(z) and δ(a0, f) = l
n ,

δ(∞, f) = 1, which proves (ii). ❑
For general transcendental entire function h(z), due to the fact that S(r, f) =

o(T (r, f)) as r →∞ and r /∈ E, where E is a set of finite linear measure, we cannot
get Theorem A. However, as in the proof of Theorem A, we have the following.

Theorem A′. Let h(z) be a transcendental entire function of infinite order and
P (z) = anzn + an−1z

n−1 + · · · + akzk be a non-constant polynomial, where k ≥ 0
and ak, an are non-zero constants. Let f(z) = P (eh(z)). We have

(i) If k ≥ 1, then δ(0, f) ≤ ν(0)
n = k

n and δ(∞, f) = ν(∞)
n = 1. In particular, 0

and ∞ are the only possible deficient values of f(z).
(ii) If k = 0, then δ(a0, f) ≤ ν(0)

n and δ(∞, f) = ν(∞)
n = 1. In particular, a0 and

∞ are the only possible deficient values of f(z).

4. The Proof of Theorem B

Since 0 and∞ are the Picard exceptional values of eh, Theorem A says that P (0)
and P (∞) are the only deficient values of f(z) = P (eh(z)). Hence, it is reasonable
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to conjecture that if eh is replaced by any meromorphic function g(z) with two
Picard exceptional values a and b, then P (a) and P (b) are the only deficient values
of P (g). Indeed, it is true. First, we need some lemmas.

Lemma 3. Let g be a non-constant meromorphic function with two Picard excep-
tional values a and b. Then

m(r,
1

g − α
) = S(r, g)

for any α ∈ C∞ \ {a, b}.
Proof . Given α ∈ C∞ \ {a, b}. We may assume that α, a and b are finite. By the
Nevanlinna’s second fundamental theorem,

T (r, 1
g−α ) = T (r, g) + O(1)

≤ N(r, 1
g−α ) + N(r, 1

g−a ) + N(r, 1
g−b ) + S(r, g)

≤ N(r, 1
g−α ) + S(r, g)

≤ N(r, 1
g−α ) + S(r, g).

Hence,

m(r,
1

g − α
) = T (r,

1
g − α

)−N(r,
1

g − α
) = S(r, g).

❑
The following theorem is fundamental in finding the deficiency of P (g).

Theorem 4. Let g(z) be a non-constant meromorphic function with two finite
Picard exceptional values a, b and let P (z) be a non-constant polynomial of degree
n. We have

(i) If P (a) 6= P (b), then

m(r,
1

P (g)− P (a)
) = ν(a)m(r,

1
g − a

) + S(r, g), and

m(r,
1

P (g)− P (b)
) = ν(b)m(r,

1
g − b

) + S(r, g).

(ii) If P (a) = P (b), then

m(r,
1

P (g)− P (a)
) = (ν(a) + ν(b))m(r,

1
g − a

) + S(r, g).

Proof . Denote k1 = ν(a) and k2 = ν(b). Then we can write

P (z)− P (a) = c(z − a)k1

n−k1∏

i=1

(z − αi)

and

P (z)− P (b) = c(z − b)k2

n−k2∏

j=1

(z − βj),

where αi 6= a for all 1 ≤ i ≤ n− k1, and βj 6= b for all 1 ≤ j ≤ n− k2.
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Note that if P (a) 6= P (b), then αi 6= a, b for all 1 ≤ i ≤ n− k1 and βj 6= a, b for
all 1 ≤ j ≤ n− k2. By Lemma ?? and Thoerem ??, we have

T (r, P (g)) = T (r, 1
P (g)−P (a) ) + O(1)

= N(r, 1
P (g)−P (a) ) + m(r, 1

P (g)−P (a) ) + O(1)
≤ ∑n−k1

i=1 N(r, 1
g−αi

) + m(r, 1
P (g)−P (a) ) + O(1)

≤ ∑n−k1
i=1 N(r, 1

g−αi
) + k1 m(r, 1

g−a ) +
∑n−k1

i=1 m(r, 1
g−αi

) + O(1)
≤ ∑n−k1

i=1 T (r, 1
g−αi

) + k1 T (r, 1
g−a ) + S(r, g)

= nT (r, g) + S(r, g)
= T (r, P (g)) + S(r, g).

Hence,

m(r,
1

P (g)− P (a)
) = k1 m(r,

1
g − a

) + S(r, g).

Similarly, we have

m(r,
1

P (g)− P (b)
) = k2 m(r,

1
g − b

) + S(r, g).

This proves (i).
If P (a) = P (b), then we can write

P (z)− P (a) = c(z − a)k1(z − b)k2

n−k1−k2∏

j=1

(z − γj),

where γj 6= a, b for all 1 ≤ j ≤ n− k1 − k2. As in the proof of (i), we still get

m(r,
1

P (g)− P (a)
) = (k1 + k2)m(r,

1
g − a

) + S(r, g),

which proves (ii). ❑
In Theorem ??, we assume that both a and b are finite values. If one of a and

b is ∞, say b = ∞, then P (a) 6= P (b) and P (g) is entire. So, as in the proof of
Theorem ??, we have

Theorem 4′. Let g be a non-constant meromorphic function with two Picard ex-
ceptional values a and ∞ and let P (z) be a non-constant polynomial of degree n.
Then we have

m(r,
1

P (g)− P (a)
) = ν(a)m(r,

1
g − a

) + S(r, g)

and
m(r, P (g)) = ν(∞)m(r, g) + S(r, g) = T (r, P (g)).

Now, we are in the position to prove Theorem B.

Theorem B. Let g(z) be a non-constant meromorphic function of finite order, such
that g(z) has two Picard exceptional values a and b. Let P (z) be a non-constant
polynomial of degree n. We have

(i) If P (a) = P (b), then P (a) is the only deficient value of P (g). Moreover,
δ(P (a), P (g)) = ν(a)+ν(b)

n .
(ii) If P (a) 6= P (b) and a, b are finite, then P (a) and P (b) are the only two

deficient values of P (g). Moreover, δ(P (a), P (g)) = ν(a)
n and δ(P (b), P (g)) =

ν(b)
n .
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(iii) If a is finite and b = ∞, then P (a) and ∞ are the only two deficient values
of P (g). Moreover, δ(P (a), P (g)) = ν(a)

n and δ(∞, P (g)) = ν(∞)
n = 1.

Proof . Note that g(z) is of finite order, so is P (g) by Theorem ??. We have
S(r, g) = o(T (r, g)) as r →∞.

If P (a) = P (b), then a and b must be finite values. By Theorem ??, we get

δ(P (a), P (g)) = lim
r→∞

m(r, 1
P (g)−P (a) )

T (r, P (g))
=

ν(a) + ν(b)
n

.

On the other hand, for any α 6= P (a), we can write P (z) − α = c
∏n

j=1(z − αj),
where αj 6= a, b for all 1 ≤ j ≤ n. Then, by Lemma ??, we have

δ(α, P (g)) = lim
r→∞

m(r, 1
P (g)−α )

T (r, P (g))
= lim

r→∞
S(r, g)

T (r, P (g))
= 0.

Therefore, P (a) is the only deficient value of P (g) and δ(P (a), P (g)) = ν(a)+ν(b)
n .

This proves (i).
If P (a) 6= P (b) and a, b are finite, then, by Theorem ??, we have

δ(P (a), P (g)) = lim
r→∞

m(r, 1
P (g)−P (a) )

T (r, P (g))
=

ν(a)
n

and

δ(P (b), P (g)) = lim
r→∞

m(r, 1
P (g)−P (b) )

T (r, P (g))
=

ν(b)
n

.

Moreover, as in the proof of (i), for any α 6= P (a), P (b), we have

δ(α, P (g)) = lim
r→∞

m(r, 1
P (g)−α )

T (r, P (g))
= lim

r→∞
S(r, g)

T (r, P (g))
= 0.

Therefore, P (a) and P (b) are the only deficient values of P (g) and δ(P (a), P (g)) =
ν(a)

n , δ(P (b), P (g)) = ν(b)
n . This proves (ii).

Finally, if a is finite and b = ∞, then, by Theorem 4′, we have

δ(P (a), P (g)) = lim
r→∞

m(r, 1
P (g)−P (a) )

T (r, P (g))
=

ν(a)
n

and

δ(∞, P (g)) = lim
r→∞

m(r, P (g))
T (r, P (g))

=
ν(∞)

n
= 1.

Moreover, as in the proof of (i), for any α 6= P (a), P (b), we have

δ(α, P (g)) = lim
r→∞

m(r, 1
P (g)−α )

T (r, P (g))
= lim

r→∞
S(r, g)

T (r, P (g))
= 0.

Therefore, P (a) and ∞ are the only deficient values of P (g) and δ(P (a), P (g)) =
ν(a)

n , δ(P (a), P (g)) = 1, which proves (iii). ❑
For arbitrary meromorphic function g(z) with two Picard exceptional values, as

the reasoning in the end of Section 3, we have the following result.

Theorem B′. Let g(z) be a non-constant meromorphic function of infinite order,
such that g(z) has two Picard exceptional values a and b. Let P (z) be a non-constant
polynomial of degree n. We have
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(i) If P (a) = P (b), then δ(P (a), P (g)) ≤ ν(a)+ν(b)
n . In particular, P (a) is the

only possible deficient value of P (g).
(ii) If P (a) 6= P (b) and a, b are finite, then δ(P (a), P (g)) ≤ ν(a)

n and δ(P (b), P (g)) ≤
ν(b)
n . In particular, P (a) and P (b) are the only possible deficient values of

P (g).
(iii) If a is finite and b = ∞, then δ(P (a), P (g)) ≤ ν(a)

n and δ(∞, P (g)) = ν(∞)
n =

1. In particular, P (a) and ∞ are the only possible deficient values of P (g).
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