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中文摘要 

Sloutsky (2010; Kloos 與 Sloutsky, 2008) 操弄不同的類別結構亂度 (categorical entropy) 

進行類別學習作業，藉此提出了雙系統理論，認為人們會啟動不同的系統，濃縮式系統 

(compression-based system)或選擇式系統 (selection-based system)，以適應不同的類別結

構組成之刺激材料。本研究回顧了 Sloutsky 的研究證據與過去類別學習領域的相關文獻，

認為此雙系統理論可能只適用在向度數目較多的情境之下，因此設計了三個實驗，使用

和 Kloos 與 Sloutsky (2008) 相同的實驗派典，欲說明刺激材料的向度個數確實會影響到

人們的類別學習行為。實驗一發現，Sloutsky 所預測的類別結構與學習方式之交互作用

只出現在向度個數較多的情境，向度個數少時則無此交互作用。實驗二得到與實驗一相

同的結果，並排除了刺激材料本身特性（幾何圖形或類自然類別材料）此一混淆變項。

實驗三採用特別設計的依變項，直接觀察受試者採用相似性(similarity)或規則(rule)的方

式進行分類判斷，集群分析的結果顯示在向度數目少的情境時，不管何種類別結構受試

者均傾向使用以規則為基礎的選擇式系統學習。因此，綜合以上發現，本研究認為

Sloutsky 的雙系統理論必須考慮到向度數目此一變項，才能更廣泛的應用於各種類別學

習情境之中。 
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Abstract 

The goal of this research is to point out that the dimensions of experimental materials can 

influence human category learning, which is neglected by traditional models of category 

learning. Three experiments in this research examined the effect of stimuli dimensionality by 

following the paradigms of Kloos and Sloutsky (2008). In Experiment 1, the prediction of 

Sloutsky’s theory (2010) on the interaction effect between category structures and learning 

conditions succeeds only at high dimensionality of materials, but fails in the low 

dimensionality condition. Experiment 2 was conducted by the same experimental setting as 

Experiment 1, but the natural-like stimuli were replaced by well-defined artificial geometrics. 

The result of Experiment 2 is the same as Experiment 1, suggesting that the dimensionality of 

materials plays a critical role in category learning no matter what kind of stimuli are used. 

Experiment 3 found that various materials dimensionality had distinct effects on human 

category representations. Namely, when experimental stimuli are relatively complex, people 

would use the corresponding category learning system to represent stimuli to learn dense 

categories or sparse ones. In contrast, when the stimuli are relatively simple, participants 

would represent the stimuli in a rule-based manner both in dense and sparse category 

structures. 
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Literature Reviews 

Categorization plays a crucial role in cognitive psychology, and numerous researches 

focus on how category learning performance is influenced by various category structures and 

learning conditions (Alfonso-Reese, Ashby, and Brainard, 2002; Ashby, Maddox, and Bohil, 

2002; Ashby, Queller, and Berretty, 1999; Colreavy & Lewandowsky, 2008; Kruschke, 1993; 

Love, 2002; Shepard, Hovland, and Jenkins, 1961). Specifically, researchers focus on 

developing models to account for the type of mental representations and the process for 

categorization, which people use/generate in category learning (Ashby & Gott, 1988; Ashby, 

Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998; Kruschke, 1992; 

Medin & Smith, 1981; Nosofsky, 1986). For instance, the generalized context model (GCM) 

is developed by the idea of storing every exemplar into mental memory space (Nosofsky, 

1986), whereas the general recognition theory assumes that classification behaviors are 

determined by learning decision boundaries (Ashby & Gott, 1988). In contrast to single 

system theories, Sloutsky (2010) proposed a dual systems theory which posits that two 

systems, the selection-based system and the compression-based system are employed for 

learning categories of different “statistical density”. The index “statistical density” was 

developed in Sloutsky’s studies (Kloos & Sloutsky, 2008; Sloutsky, 2010) in order to 

represent the characteristics of category structure. A category structure composed of 

multi-dimensional exemplars can be simply described by the calculation of statistical density 
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as simple figures ranging from 0 to 1. In addition, the statistical density indicates the 

regularity of category structure. Namely, a high level of density represents the category 

structure in high regularity. However, category structures maybe oversimplified by this index, 

for instance, some researchers suggest that the dimensionality of materials could influence 

participants’ learning strategies and category perceptions (Livingstion, Andrews, and Harnad, 

1998; Minda & Smith, 2001; Nosofsky, Stanton, and Zaki, 2005; Verguts, Ameel, and Storms, 

2004). Therefore, the present study suggests that Sloutsky’s dual systems theory should be 

re-organized with assessing the effects of materials dimensionality. This thesis is organized in 

the order of reviewing relevant categorization theories, re-examining Sloutsky’s theory, 

showing the experiment results, and providing general discussions. 

Past theories of categorization 

The classic theory of Aristotle is known as the oldest theory of categorization. This 

theory assumes that an exemplar would belong to a specific category only if it has all features 

required by this category. For example, a square is defined as a closure figure which has four 

equal sides and four vertical angles. Therefore, a closure figure is a square if it has all features 

mentioned above (Smith & Medin, 1981). The closure figure with four equal sides and four 

vertical angles is definitely a square. This is so-called a “well-defined” stimulus where there 

is a condition of sufficient and necessary relation between item features and the concept of a 

category (Martin & Caramazza, 1980).  
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However, learning a category is more than learning the sufficient and necessary relations 

between the stimulus feature and the concept of category. Shepard, Hovland and Jenkins 

(1961) revealed that the human learning performance is influenced a lot by category structure. 

In their study, each stimulus could be defined by its size, shape, and color. For each 

dimension, there were two levels (e.g., the figure could be either triangle or square, either 

black or white, and either big or small). Therefore, there would be eight stimuli for all the 

combinations (23 = 8). Figure 1 displays one of the possible category structures. With the 

arrangements of stimuli, different category structures were created. Shepard and his 

colleagues (1961) carefully chose six out of seventy (C48 = 70) types of category structures 

for testing, seen in Figure 2. They recorded the numbers of errors made by participants and 

found the difficulty of learning categories increased gradually from Type I to Type VI. 

According to the result, Shepard et al. (1961) concluded that the category structure of stimuli 

could affect the difficulty of category learning. 

 
Figure 1. Example of category structure. Two categories are labeled as “A” and “B”.  
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Figure 2. Category structures of stimuli used in the study of Shepard et al. (1961) (Nosofsky, Gluck, 

Palmeri, Mckinley, and Glauthier, 1994) 

 

The result of Shepard et al. (1961) has been replicated by many experiments and become 

a classic, for which most contemporary models qualify themselves via showing the capability 

to account (Alfonso-Reese, et al., 2002; Ashby, Queller, Berretty, 1999; Kruschke, 1993; 

Kloos & Sloutsky, 2008; Love, 2002). In the past decades, a great deal of models were 

proposed and can be summarized to three major classes. 

The similarity models posit that categorization is achieved by grouping similar objects 

together and by separating apart those dissimilar ones. Both the prototype and 

exemplar-based models are belonged to this class. Different from the classic theory of 

Aristotle, the main idea of prototype theory comes from the attempt to address categorization 

of natural objects instead of artificial items. It indicates that there are “natural prototypes” of 

concepts (Rosch, 1973). For example, when referring to a bird, the first idea comes to our 
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mind may be a sparrow, but not a chicken nor a penguin. It suggests that a sparrow is more 

typical than a chicken when the concept of birds is mentioned. In this way, the relation 

between the features of exemplars and the concepts of a category is not sufficient and 

necessary. In other words, a bird may have some typical features like wings, feathers, being 

able to fly in the sky, and so on, but not every creature is categorized as a “bird” which has all 

features above. These kinds of stimuli are called ‘ill-defined’, which means the boundary of a 

concept cannot be clearly described (McCloskey & Glucksberg, 1978). There are 

idiosyncratic features in some exemplars (like penguin is a bird which cannot fly), while the 

core features of a concept are the mostly appeared (like every bird has feathers). Therefore, 

an exemplar with core features was the prototype of concept (Homa & Chambliss, 1975). In 

other words, the prototype is always the most typical exemplar of a category. This is unlike 

the classic theory, which assumes the representatives of each exemplar to a category concept 

are all the same. 

The prototype model claims that people would compare a new stimulus to the most 

typical exemplars of a category, the prototype, when they need to do classification. The new 

stimulus would be classified as the same category if it is similar to the prototype, otherwise it 

would be classified as a different category.  

Similar to the prototype model, the exemplar-based model posits that people would 

compare to a new stimulus to every exemplar, not the prototype only, in the categories and 
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classify it as the category with a relatively high similarity (e.g., context model; Medin & 

Schaffer, 1978; GCM (generalized context model); Nosofsky, 1984, 1986, 1987). 

Following the influential exemplar-based model, GCM, the similarity is derived from 

the negative exponential transformation of the distance between items in the psychological 

space. The probability of classifying Stimulus i to Category CJ can be illustrated by 

P�RJ�Si� =
𝑏J ∑ ηijj∈CJ

∑ (𝑏K ∑ ηikk∈CK
m
K=1 )

            Equation 1-1 

where 𝑏J represents the bias for making response RJ and the index “j ∈  CJ” means that 

similarity between Si and each Sj belonging to CJ should be calculated. The ηij which is 

adjusted by selective attention, w, representing the distance/similarity between Stimulus Si 

and Stimulus Sj:  

    ηij = f(dij), and            Equation 1-2 

    dij = c[∑ 𝑤k�𝑥ik − 𝑥jk�
𝑟
]1 𝑟�N

k=1          Equation 1-3 

where the parameter c represents the overall discriminability in the psychological space. 

Equation 1-3 shows that the less the psychological distance between two items, the more 

similar they are. Moreover, GCM assumes that the dimension would be attended more when 

it is more critical for correct categorization and less otherwise. That is, the psychological 

dimensions can be stretched or shrunk by multiplying the distance on dimension with an 

attention weight (0 ≤ 𝑤k ≤ 1) (Figure 3) and all attention weights are assumed to sum to 1.  
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ALCOVE (Attention Learning Covering Map) was proposed by Kruschke (1992), which 

is a 3-layered neural network model learning categories in an exemplar-based fashion. The 

nodes in the input layer correspond to the stimulus dimensions and the nodes in the hidden 

layer correspond to the exemplars, which would be activated to the extent of how similar they 

are to the current input stimulus. The nodes in the output layer correspond to the category 

labels. ALCOVE adopts an error-driven learning, in that the associative weights between the 

output and hidden nodes as well as the attention weights for all dimensions are adjusted for 

the aim to correctly assign exemplars to their corresponding categories. More than GCM as a 

static model, ALCOVE can trace the participants’ learning performance trial by trial with the 

dynamic characteristic of neural network. Therefore, ALCOVE can account for those 

phenomena for which GCM can account, even including the learning difficulty gradient 

among category structures reported by Shepard, et al. (1961) (Nosofsky, Gluck, Palmeri, 

McKinley & Glauthier, 1994) 
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Figure 3. Mental representation structures transformed by different attentional weights on features. For 

example, there are total eight items defined by three dimensions, shape, size, and color. In this case, it is easier 

to differentiate two categories by color in structure of 3B than 3A. 

 

The rule-based model, on the contrary, posits that to learn categories is to learn the rule 

for defining categories. For instance, in Taiwan, a student’s studying performance can be 

regarded as two classes, pass and fail, depending on whether he/she gets a score larger than or 

equal to 60. Although broadly speaking, rule can be of any format, this thesis focuses on the 

models of the general recognition theory (GRT; Ashby & Gott, 1988) as the generic form of 

the rule-based models. According to the GRT, each item is a percept in the psychological 

space and different categories correspond to different regions in this space separated by a 

decision boundary, namely a rule, as in Figure 4. Thus, if an item’s percept locates in the 

region corresponding to Category A, it will be classified to Category A. Accordingly, for the 

GRT, category learning is achieved when people form the decision bound(s) in the category 

learning task.  
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Figure 4. Mental category representation divided by a decision bound. (Ashby & Gott, 1988) 

 

Although the rule-based and the similarity-based models are quite different, they both 

can predict human categorization behaviors very well (Maddox & Ashby, 1993, 1998; 

McKinley & Nosofsky, 1995, 1996). Thus, it is legitimate to posit that both types of 

representations people would use. This idea was supported empirically by Rouder and 

Ratcliff (2004). These authors revealed that the exemplar-based model outperformed the 

rule-based model when there were only few stimuli, whereas the rule-based model did when 

there were a lot of exemplars. This finding is explained as when there are only few stimuli, 

people can remember all the exemplars in the category, hence, it is reasonable to compare a 

new stimulus to every exemplar in the original category before giving a categorical label, 

whereas people would tend to learn categorical bounds when too many exemplars to 

remember. 

Therefore, more and more models adopt the multiple representations view and these 

models are called multi-system model in this thesis. Besides, due to the rapidly progress in 
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neural imaging techniques, some researchers suggests a multi-system theory not only in 

category learning (Ashby et al., 1998; Erikson & Kruschke, 1998; Nomura et al., 2007) but 

also other cognitive abilities or behaviors (Anderson & Lebiere, 1998; Sloman, 1996). 

Erickson and Kruschke (1998) presented a connectionist model called ATRIUM. This 

hybrid model consists of both the rule- and exemplar-based representation. The authors claim 

that participants learn categories by a mechanism incorporating these two kinds of modules 

for achieving the best performance and displays that ATRIUM can account for empirical data 

of categorization better than a single system model. COVIS (The Competition between verbal 

and implicit systems) model is another famous multi-systems theory (Ashby et al, 1998). 

COVIS model suggests that there are two independent subsystems of category learning: the 

rule-based subsystem (explicit system) and the procedural learning-based subsystem (implicit 

system). The two subsystems would compete with each other and it has to be only one 

subsystem to function during category learning. It would not be addressed here, as the issue 

of this present study is far from the main concern of the COVIS model. Before introducing 

the Sloutsky’s theory, which this study would address, two characteristics of category 

learning are discussed first. 

Learning condition of categorization 

The studies mentioned above, from the research of Shepard et al. (1961) to the debate 

between similarity-based theory and rule-based theory (Maddox & Ashby, 1993, 1998; 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Running head: Materials dimensionality and category learning 

13 
  

McKinley & Nosofsky, 1995, 1996; Nosofsky, Stanton, & Zaki, 2005; Stanton & Nosofsky, 

2007), are mostly established by the evidences from supervised learning tasks. In a typical 

supervised learning task, participants would get a feedback or an instruction from each 

response. The feedback can be a visual message, like words of correct or wrong, or an 

auditory tone, like a high or low frequency beep. After receiving the feedbacks, participants 

can modify their learning strategies to approach the correct answers. Moreover, participants 

usually have little information at the beginning of task and learn the category rules through 

trial and error. Thus, it is reasonable that there are often many trials in a supervised learning 

task. Besides supervised learning, unsupervised learning is another kind of conditions in the 

experiments of category learning. In the unsupervised learning task, there is no any feedback 

from responses. Past studies showed that participants had different performances under 

different conditions of learning (Ashby, Queller, & Berretty, 1999; Colreavy & Lewandowsky; 

2008; Love, 2002; Ashby, Maddox, & Bohil, 2002). Actually, the unsupervised learning is 

much more similar to the ways we learn categories in our daily life. 

Category structures 

As mentioned in the earlier paragraph, the category structure plays an important role on 

category learning (Shepard et al., 1961). Kruschke (1993) also found that “relevant 

dimensions” could influence participants’ performances. To explain further, assume there are 

two categories of the experiment materials (denoted as white and black circle in Figure 5), 
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and each material could be represented by two dimensions of features, height and position, 

like Figure 5a and 5b. In the condition of Figure 5a, participants could differentiate materials 

in two categories by concentrating on only one dimension, either height (left) or position 

(right). This was named as “filtration task” because participants needed to filter out 

non-relevant dimensions and identify the relevant one for categorization. In the condition of 

Figure 5b, participants had to consider height and position dimensions simultaneously. Due to 

the fact that participants must condense multi-dimensions to one decision bound of category, 

this is called “condensation task”. 

 
Figure 5. Category structures of stimuli used in Kruschke’s study (1993). 

The behavioral data showed that participants performed better on a filtration task than 

on a condensation task. Therefore, Kruschke (1993) concluded that the category learning task 

became harder when there were more relevant dimensions to be taken into account. The 

implications of Kruschke’s results are twofold. First, the category structure is more 
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complicated in a condensation task than a filtration task. That is, participants need to consider 

both dimensions at the same time and it results in worse performances. Second, since 

Kruschke’s research was also based on the supervised learning, Kloos and Sloutsky (2008; 

see also in Sloutsky, 2010) argued that an immediate feedback could make an attentional shift 

more easily, which benefited the subjects’ performances by enhancing the cognitive 

processing of locating and focusing on a specific relevant dimension. It, however, became an 

obstacle when subjects needed to spread their attention on all dimensions at the same time, 

e.g., in a condensation task. 

To sum up, not only the learning paradigm but also the category structure can influence 

participants’ performances. Furthermore, some researches of developmental psychology 

suggest that children have different ways from adults to learn categorization, which may be 

caused by the immaturity of brain area (Sowell, Thompson, Holmes, Batth, Jernigan, & Toga, 

1999). Therefore, Sloutsky (2010) develops a dual systems theory of category learning, and 

tries to illustrate the relations among category structures, learning conditions, and categorical 

behaviors. 

Sloutsky’s dual systems theory 

Sloutsky (2010) proposed a theory addressing the relationships among category 

representations, category structures, and learning conditions. This theory is one of the 

multi-system theories, as it assumes that the compression-based system and the 
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selection-based system According to his theory, the manners people represent items are 

decided by category structures. In addition, these effects are detectable on the accuracy rates 

of various learning conditions. 

Like COVIS model (Ashby et al., 1998), Sloutsky also tries to connect the explicit and 

implicit memory systems to category learning mechanisms. He assumes that there are two 

subsystems, compression-based systems and selection-based systems, corresponding to the 

similarity-based system and the rule-based system respectively. During learning categories, 

which one of the two systems will function depends on category structure as well as learning 

paradigm (e.g., supervised learning or unsupervised learning) (Sloutsky, 2010). In addition, 

Sloutsky’s theory also has corresponding neural bases. The compression-based system is 

mainly related to the visual loop, which begins from the inferior temporal area through the 

tail of caudate in the striatum (Segar & Cincotta, 2002), with many cortex neurons merged 

into a never bundle of caudate nucleus (Bar-Gad, Morris, & Bergman, 2003). Since the visual 

loop is in charge of recording visual information by reducing or compressing the visual input, 

the compression-based system is assumed to learn categories by recording the often appeared 

features (see Figure 6). Thus, the common features of highly similar exemplars, after being 

repeatedly presented, would be recorded by the compression-based system with little or even 

no attention. On the other hand, the selection-based system is assumed to be relevant to the 

cognitive loop, which goes through the prefrontal lobe and the head of caudate, and is 
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activated during category learning process in a rule-based manner (Segar, 2008). The 

cognitive loop is related to the dorsolateral prefrontal cortex and the anterior cingulated 

cortex. Past studies found that this brain area is related to selective attention, working 

memory, and executive function (Cohen et al., 1997; Cohen, Botvinick, & Carter, 2000; 

D’Esposito, Postle, Ballard, & Lease, 1999). The manner of the selection-based system to 

learn categories is to select and focus on particular dimension(s) while ignoring the others. 

Therefore, it is suitable for learning the stimuli which can be classified by considering feature 

dimensions (Figure 7). 

The coordination between the compression-based system and the selection-based system 

follows “the winner takes all” rule, in that only one system would be executed in learning a 

category structure. The “default system” of these two systems is adjusted by the learning 

condition and the category structure in adults. In contrast, past researches showed that 

children do not develop the selection-based system until four or five year-old (Kloos & 

Sloutsky, 2008; Sloutsky, 2010). Therefore, the rule-based subsystem is apparently not the 

default learning system for children. 
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Figure 6. The learning progress of compression-based system (Sloutsky, 2010). This system records the 

most frequently occurring features. 

 

 

Figure 7. The learning progress of selection-based system (Sloutsky, 2010). This system is good at shift 

attention to focus on specific dimension(s) and ignore others. 

 

Statistical density 

Sloutsky’s dual systems theory posits that people use different learning systems 

depending on “what materials look like”, i.e., the category structure (Kloos & Sloustky, 2008; 

Sloutsky, 2010). That is, whether people would use the selection-based system or the 

compression-based system to learn the category task can be predicted by considering the 

composition of materials, specifically the category structure. In order to make different 
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category structures comparable, Kloos and Sloutsky (2008) proposed an index named the 

statistical density. The calculation of statistical density is based on “entropy” in the 

information theory (Shannon, 1948). The entropy in Sloutsky’s dual system theory represents 

the extent of randomness, while the statistical density represents the regularity of stimuli. The 

relation between entropy and statistical density can be described as 

D = 1 −  Hwithin
Hbetween

,                                               Equation 2 

where D denotes the density and H denotes the entropy. When Hbetween remains constant, 

the larger the within-category entropy is, the lower the density becomes. On the other hand, if 

Hwithin stays constant, the larger the between-category entropy is, the higher the density 

becomes. According to Sloutsky, the compression-based system would be used when D is 

large, whereas the selection-based system would be activated when D is small. The 

within-category entropy, Hwithin, is the variability of items within the target category, while 

the between-category entropy, Hbetween, is acquired by considering the variability between 

the target category and the contrasting category. The within-category entropy is the sum of 

the dimensional and relational entropy within a category and the between-category entropy is 

the sum of the dimensional and relational entropy between categories, which are respectively 

computed as 

Hwithin    =  Hwithin
dim +  Hwithin

rel  and                           Equation 3-1 

Hbetween =  Hbetween
dim +  Hbetween

rel .                              Equation 3-2 
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In addition, Hwithin would not be bigger than Hbetween because the within-category 

variability is also considered in the calculation of Hbetween. Thus, the density is a number 

between 0 and 1. 

The dimensional entropy within category and between categories are computed as 

 Hwithin
dim    =  −  ∑ wi

M
i=1 [∑ (pj log2 pj)]withinj=0,1  and                 Equation 4-1 

 Hbetween
dim =  −  ∑ wi

M
i=1 [∑ (pj log2 pj)]betweenj=0,1                   Equation 4-2 

where, for the within-category case, pj is the percentage of feature j on one dimension within 

a category, whereas, for the between-category case, pj is the percentage of feature j on one 

dimension across categories. For instance, if the stimuli of the target category are all black 

and the contrasting category are all white, then pj=1 = 1 (j=1 for black and j=0 for white) on 

color dimension in the within-category case, whereas pj=1 = 0.5 in the between-category 

case. The dimensional entropy is the sum of the material variability on m dimensions, each of 

which is weighted by an attention weight, w. 

Different from the dimensional entropy, the relational entropy concerns the extent of 

variability between every pair of dimensions, which is computed for the within-category case 

as well as the between-category cases as 

Hwithin
rel    =  −  ∑ wk

O
i=1 [∑ (pmn log2 pmn)]withinm=0,1

n=0,1
 and          Equation 5-1 

Hbetween
rel =  −  ∑ wk

O
i=1 [∑ (pmn log2 pmn)]betweenm=0,1

n=0,1
 with          Equation 5-2 

O =  C2M =  M!
(M−2)!∗2!

.                                         Equation 6 
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For M dimensions, there would be O =  C2M pairs. As the dimensions are dyadic, there 

would be four combinations of the feature values for each pair. Accordingly, pmn is the 

probability of one of the combinations between “feature m” and “feature n”. The variability 

information of different pair is differently weighted by the attention weight, wk. For instance, 

if the target category members are all black squares while the contrasting category members 

are all white circles, the within-category variability of the color-shape pair for all four value 

combinations is 1, 0, 0, and 0 in the order of black-square, black-circle, white-square, and 

white-circle. However, the between-category variability is 0.5, 0, 0.5, and 0 in the order of 

black-square, black-circle, white-square, and white-circle. 

Kloos and Sloutsky (2008) conducted a series of experiments and reviewed past 

literature to estimate the salience of varying dimensions. They led into a conclusion that the 

attentional weight of a particular dimension (wi) was twice as large the dyadic relation 

between dimensions wk, wk = 1
2

wi. In order to compute density in an easier way, the 

dimensional attention weight, wi, is set as 1 and the relational weight, wk, is set as 0.5 in the 

current study. 

 Statistical density is a convenient index to represent category structures. To illustrate this 

index in detail, two examples showing the calculation of density are included in the 

Appendix. 
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Incongruent evidence with Sloustky’s dual systems theory  

The main idea of Sloutsky’s dual systems theory is to describe the relationship between 

category structures (in terms of density), conditions of learning, and category representations 

(Sloutsky, 2010). Because of the characteristics of the compression-based system and the 

selection-based system, Sloutsky predicts an interaction effect between learning conditions 

and category structures. Namely, the selection-based system would function during learning a 

low density category and improve the performance on the supervised learning condition, 

whereas the compression-based system would function during learning a high density 

category and improve the performance on the unsupervised learning condition. Kloos and 

Sloustky (2008) found that when learning categorization in the condition of dense category 

(high density, displayed in the upper part of Figure 8), participants performed better under the 

unsupervised learning condition than under the supervised learning condition. On the contrary, 

participants performed better under the supervised learning conditions than under the 

supervised learning in the condition of sparse category, when learning the low-density 

category structures (shown in the lower part of Figure 8). From now on, the high-density 

category structure is called the dense category and the low-density category structure is called 

the sparse category.  
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Figure 8. Examples of dense and sparse category (Kloos & Sloutsky, 2008). In this figure, the 

between-variability in dense and sparse category is the same. But both the target and contrasting items in 

the dense category share a similar within-group appearance, which represents a smaller within- variability. 

That is, the between entropy remains constantly, but the within-entropy is smaller in the dense category. 

As a consequence, the statistical density is larger in the dense category. 

 

However, Sloutsky’s dual systems theory has difficulty accounting for the learning 

difficulty gradient over category structure reported by Shepard et al. (1961). Figure 9 shows 

those category structures as well as their statistical densities. Shepard and his colleagues 

(1961) conducted their experiments in the condition of supervised learning. According to 

Sloutsky’s (2010) opinion, the supervised learning condition would trigger the 

selection-based subsystem, which is suitable to learn the sparse categories rather than the 

dense ones. Therefore, type VI category structure (density = 0; sparse category) should be 

learned better in the supervised learning condition, while type I (density = 0.33; dense 
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category) should be learned worse. However, Shepard et al. (1961), conversely, found that 

Type I was learned better than Type VI in the supervised learning condition.  

 

 
Figure 9. Density of category structure which Sheaprd et al. (1961) used (Kloos & Sloutsky, 2008). 

 

 

 

Love (2002) examined the finding of Shepard et al. (1961) under both supervised and 

unsupervised learning conditions and found that participants performed better on Type I and 

worse on Type VI in no matter which learning condition, see in Table 1. This result 

challenges the Sloutsky’s dual systems theory which predicts an interaction effect between 

the density and the learning condition. 

 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Running head: Materials dimensionality and category learning 

25 
  

 

 

Table 1. Results of Love’s (2002) study 

Category 
structure 

 Accuracy rate  Reaction time (ms) 
 M SE  M SE 

Intentional unsupervised learning 
Type I  .85 .027  2,034 173 
Type II  .64 .024  2,640 254 
Type IV  .67 .018  2,641 160 
Type VI  .54 .020  2,433 175 
Supervised learning 
Type I  .89 .025  1,636 103 
Type II  .73 .029  2,902 170 
Type IV  .70 .021  2,649 163 
Type VI  .61 .024  3,018 183 

 

The discrepancy between Shepard, et al. (1961) and Love (2002) results and Sloutsky 

(2010) theory may come from the regimes of their experiments, specifically the stimulus type 

and the number of dimensions. First, Sloutsky often took bug-like materials as experimental 

stimuli, which were referred to as natural concepts (Kloos & Sloutsky, 2008), while the 

stimuli used in Shepard, et al.’s and Love’s study were artificial geometrics. There are many 

studies showing the performance of participants could be influenced by the kinds of stimuli 

used (Love, 2003; Markman & Makin, 1998; Markman & Ross, 2003). Second, the stimuli in 

Kloos and Sloutsky’s (2008) experiment had six, eight or ten dimensions (e.g. length of 

wings, color of body, number of fingers, etc.; as shown in Figure 8). In contrast, the materials 

had only three dimensions in Shepard’s study, and four in Love’s, which were substantially 
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simpler in the respect of visual perception. The past research revealed that the learning 

strategy of participants could be influenced by the dimensionality of materials (Minda & 

Smith, 2001). In addition, Livingston, Andrews, and Harnad (1998) found that the 

dimensions of stimuli could mediate different effects in category perception. Namely, the 

distances between each member of the same category become closer after category training, 

the within-compression effects, were only observed when stimuli varied in two dimensions, 

but did not appear in one dimension. This result indicates that people perceive the category 

concepts differently when the number of stimulus dimensions is in different level. 

As a consequence, the aim of this study is to illustrate the reasons making inconsistent 

results among Sloutsky’s theory (2010; see also in Kloos & Sloutsky, 2008) and the past 

researches (Shepard et al, 1961; Love, 2002). Through the literature reviews and the direct 

comparison of the experimental settings of these researches, this study focuses on two 

possible factors, the overall dimensions of stimuli and the kinds of stimuli used. According to 

Sloutsky’s theory, human learn categories by either selection-based system or 

compression-based system which depends on the statistical density, i.e., category structure. 

Thus, an interaction between category structure and representation is predicted. Besides, the 

characteristics of supervised and unsupervised learning condition make different effects 

during the learning of different subsystems, which indicates that an interaction between 

learning condition and category structure in terms of learning performance is also predicted. 
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However, if the predicted interactions are not displayed under the manipulations of different 

stimuli used or overall dimensions of stimuli, which means that the Sloutsky’s dual systems 

theory needs to be modified under certain circumstances. 
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Methods 

Experiment 1 

According to Sloutsky’s theory, the unsupervised learning condition would trigger the 

compression-based system, which suits the dense category structure, whereas the supervised 

learning condition would trigger the selection-based system, which suits the sparse category 

structure. Also, the dimensionality of material has nothing to do with the correspondence 

between category structure and learning condition. In order to examine this idea, two groups 

of participants were recruited, each for learning one type of category structure (dense or 

sparse). Each participant was asked to learn the assigned category structure with two types of 

dimensionality (eight vs. four dimensions) in two learning conditions (supervised learning vs. 

unsupervised learning). If there is no difference on the interaction effect (category structure x 

learning condition) with either material dimensionality, Sloutsky’s theory is supported. Same 

as in the first and second experiment of Kloos and Sloutsky (2008), the artificial bug-like 

materials were used in this experiment (see Figure 10 and Figure 11). 

Apparatus 

The experiment was conducted in a quiet testing booth and the procedure and data 

collection were done by a Matlab program with the aid of Psychtoolbox version 2.5.4 

(Brainard, 1997; Pelli, 1997) on an IBM compatible PC.  
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Participants 

Ninety-eight undergraduate and graduate college students took part in the task 

voluntarily and were reimbursed with a small amount of money for their traffic expense. 

Participants were assigned equally to the conditions of dense or sparse categories. The age of 

these participants ranged from 18 to mid 30s. All participants’ visions were reported normal 

or corrected to normal. 

 

Stimulus  

In the condition of low dimensionality, the stimuli were composed of four binary 

dimensions, the shading of antennas (dark or light colour), the number of fingers (many or 

few), the length of wings (long or short), and the shading of the body (dark or light colour) 

(Figure 10).  

 

 
Figure 10. Examples of low dimensionality (4 dimensions) stimuli used in Experiment 1. The left figure has 

dark antennas, many fingers, dark body color, and short wings. The right one has light antennas, few fingers, 

light body, and long wings. 
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In the condition of high dimensionality, the stimuli varied along eight dimensions. In 

addition to the four dimensions used in the low dimensionality condition, the other four 

dimensions were: the length of fingers (long or short), the length of the tail (long or short), 

the number of buttons (many or few), and the shading of buttons (dark or light) (Figure 11). 

These eight dimensions were just same as Kloos and Sloutsky (2008) used in their fourth 

experiment. 

 
Figure 11. Examples of high dimensionality (8 dimensions) stimuli used in Experiment 1. The right figure has 

dark antennas, many and long fingers, dark body color, long tail, many and dark color buttons, and long wings. 

The left one has light antennas, few and short fingers, light body, few and light color buttons, and long wings. 

 

Stimuli were generated as either in the statistically dense category or in the statistically 

sparse category. The statistical density of the dense category was 0.50 in the high 

dimensionality condition, and the sparse category was 0.13. In the condition of low 

dimensionality, the density of the dense category was 0.36, while the sparse category was 

0.10. The dense category represented a category structure which had high similarity of target 

items, but looked quite different between target category and contrasting category (see Figure 
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8). Because the items could not be categorized by only few features, the better way to classify 

would be consider the overall appearance of stimuli. In contrast, in the sparse category 

structure, the members in the target category were less similar to each other. Thus, 

categorization became easier with only few specific features. These specific features were 

named as “arbitrary rules” in the sparse category condition, because the participants could 

decide to which category a stimulus belonged by these features only. Table 2 and 3 showed 

the category structure used in this experiment. 

The target items of the dense category in the low dimensionality condition (i.e., four 

dimensions) were set to have short wings, light color of antennas, light color of body, and few 

fingers, while the contrasting items had long wings, dark color of antennas, dark color of 

body, and many fingers. On the other hand, in the high dimensionality condition, the target 

items of the dense category had short wings, light colour of antennas, light color of body, few 

fingers, short fingers, short tails, few buttons, and light colour of buttons, while the 

contrasting items had long wings, dark color of antennas, dark color of body, many fingers, 

long fingers, long tails, many buttons, and dark colour of buttons.  

In addition, the four features, length of wings, shading of antennas, shading of body, and 

number of fingers were equally likely to be chosen as the arbitrary rule in sparse category, in 

order to prevent the feature specific effect on learning the rule. 
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Table 2. Category Structure of Stimuli Used in 4 dimensions in Experiment 1 

Dimension 
Dense category Sparse category 

Target item Contrast item Target item Contrast item 
length of wings 0 1 0 1 
Shading of antennas 0 1 … … 
Shading of body 0 1 … … 
Number of fingers 0 1 … … 

Note. The numbers 0 and 1 refer to the values of each dimension (e.g., 0 is light color, while 1 is dark color). The “…” 

represents the varied randomly features. 

 

Table 3. Category Structure of Stimuli Used in 8 dimensions in Experiment 1 

Dimension 
Dense category Sparse category 

Target item Contrast item Target item Contrast item 
Length of wings 0 1 0 1 
Shading of antennas 0 1 … … 
Length of tails 0 1 … … 
Length of fingers 0 1 … … 
Number of buttons 0 1 … … 
Shading of buttons 0 1 … … 
Shading of body 0 1 … … 
Number of fingers 0 1 … … 

Note. The numbers 0 and 1 refer to the values of each dimension (e.g., 0 is light color, while 1 is dark color). The “…” 

represents the varied randomly features. 

 

For the reason of testing the vigilance of participants, eight new items were added into 

the testing phase, which consisted of new features such as that they had a multi-colour body 

in a hexagonal shape, no finger, and no tail (Figure 12). Because these pictures had dissimilar 

appearances and different values of features, it was expected that the participants could reject 

those items accurately. 
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Figure 12. Examples of vigilance pictures used in Experiment 1. These pictures are supposed to be rejected in 

the testing phase. 

 

Procedure 

Each participant took in turn four sessions to learn stimuli of two complexities using two 

types of learning. The sequence of the four sessions was generated from a Latin square design. 

In each session, there were four blocks, each of which contained a training phase with and a 

testing phase.  

In the training phase, participants were asked to learn the target category called “Ziblet” 

in a self-pace manner. The participants were given the information about the target item in 

verbal sentences (supervised learning) or in graphical figures (unsupervised learning). In the 

supervised learning condition, the verbal rules were listed on screen directly, while in the 

unsupervised learning condition, sixteen pictures of target items were displayed in a random 

sequence. Participants were told to remember the verbal rules and the pictures as possible as 

they could in the training phase. In addition, there was no any feedback in this section. 
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In order to make sure that the participants understood the name of every feature, the 

computer program would firstly show the feature and its corresponding name simultaneously 

in the beginning of every training phase. For instance, the picture of fingers and the name 

“finger” were both showed together on the screen. 

In the testing phase, the participants were asked to answer whether or not the present 

pictures belonged to the target category. Sixteen pictures belonging to target category and 

sixteen pictures belonging to contrasting category were used in the testing phase. An 

additional eight vigilance pictures were added to examine whether the participants 

concentrated properly in the experiment. If more than three vigilance pictures were not 

rejected correctly in a block, the data of the participant would be excluded from further 

analyses. Therefore, a total of 40 pictures were used in the testing phase.  

 

Results 

Twenty subjects were excluded (10 out of 49 in the sparse category condition, and 10 

out of 49 in the dense category condition) from data analyses, due to their failures to reject 

the pictures of vigilance testing (data was excluded if there was any condition that participant 

did not correctly reject at least 5 of 8 vigilance pictures). The accuracy rates of 32 items in the 

testing phases (without the eight vigilance pictures) of each participant were computed to 

examine the learning of the target category. A 2 (Density) × 2 (Dimensionality) × 2 
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(Learning Condition) mixed-design ANOVA revealed that the 3-way interaction was not 

significant (F(1, 76) = 0.44, MSe = 0.09, p = .51, η2 = 0.01). The 2-way interaction was 

significant only between Learning condition × Density (F(1, 76) = 6.61, MSe = 0.09, p 

< .05, η2 =0.08), but not significant either between Learning condition × Dimensionality 

(F(1, 76) = 1.57, MSe = 0.09, p = .22, η2 = 0.02) or Density × Dimensionality (F(1, 76) = 

0.01, MSe = 0.08, p = .91, η2 = 0.00). The main effects of Density (F(1, 76) = 56.91, MSe = 

0.18, p < .01, η2 = 0.43) and Dimensionality (F(1, 76) = 5.08, MSe = 0.07, p < .05, η2 =0.06) 

were significant, but Learning condition (F(1, 76) = 0.01, MSe = 0.09, p = .92, η2 = 0.00) was 

not. Slousky’s theory predicts an interaction between Density and Learning condition with no 

matter how complex the stimulus is. However, as discussed about Love’s (2002) results in the 

previous section, the interaction effect between Density and Learning condition may 

disappear when the dimensionality of materials is low. Visual inspection on Figure 13 implies 

an interaction between Density and Learning condition only when the material is more 

complex (i.e., 8 dimensions). This observation was supported by the analysis for the 

interaction effects, that the interaction effect between Density and Learning condition was 

significant for high dimensionality materials (F(1, 76) = 4.97, p < .05, MSe = 0.2, η2 =0.06), 

but not significant for low dimensionality materials (F(1, 76) = 2.00, MSe = 0.17, p = .16, η2 

=0.02).  
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Therefore, the result of this experiment reveals that dimensionality does influence 

category learning, which also means Sloutsky’s theory should be modified by taking into 

consideration the dimensionality of materials. 

  

Dense Sparse
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
8-dimensions

Category Structure

H
its

Dense Sparse
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
4-dimensions

Category Structure

H
its

 

 

Unsupervised learning
Supervised learning

Figure 13. Mean accuracy scores by category type and learning condition in Experiment 1. 
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Experiment 2 

The previous experiment reveals that the dimensionality of materials in terms of the 

number of dimensions would moderate the learning performance. In addition to the 

dimensionality of materials, the type of stimulus may also result in the different findings of 

Love (2002) and Shepard et al. (1961) from Sloutsky’s. In Kloos and Sloutsky’s study (2008), 

they mainly used natural-like stimuli which were composed of natural-like features such as 

wings, tails, antennas, etc. However, the stimuli used in the studies of Shepard et al. (1961) 

and Love (2002) were artificial geometrics, such as a dark large circle, etc. Therefore, 

Experiment 2 was designed to examine the effect by using artificial geometrics. For a parallel 

comparison with Experiment 1, Experiment 2 adopted the experimental design of Experiment 

1, manipulating Density (between-subject variable), Dimensionality (within-subject variable), 

and Learning condition (within-subject variable), but using the artificial geometrics as 

stimuli. 

 

Participants 

Eighty-five college students were recruited with traffic reimbursement of one-hundred 

NT dollars per hour for their expense of time and money. For the density category condition, 

there were thirty-six participants and forty-nine for the sparse category condition. The age of 

these participants ranged from 18 to mid 30s. All participants reported that his/her vision was 

normal or corrected to normal. 
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Stimulus 

The dense and sparse categories were defined by the same way used in Experiment 1. 

Also, same as in Experiment 1, the extent of material dimensionality was defined by the 

number of features (4 vs. 8). The low-dimensionality material consisted of four binary 

features: the shape of figure (square vs. rectangle), the color of figure (blue vs. purple), the 

color of frame (red vs. yellow), and whether there was a dot in the circle (Figure 14). The 

high-dimensionality material consisted of the four features of the low-dimensionality material 

and the other four features: the number of frame lines (1 vs. 2), the size of figure (big vs. 

small), whether the figure was open or closure, and whether there was a diagonal line or not 

(Figure 15). 

 
Figure 14. Examples of stimuli in low dimensionality used in Experiment 2. The left geometric is a rectangle 

with red frame line, purple body, and a dot in the middle, while the right one is a square with yellow frame line, 

blue body, and there is no dot in it. 

 

The target items of the dense category in low dimensionality were purple squares with red 

frame line, while the contrasting items were blue rectangles with yellow frame line and a dot 

in the middle. The target items of the dense category in high dimensionality were small, 
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Figure 15. Examples of stimuli in high dimensionality used in Experiment 2. The left geometric is a big, open 

square with one yellow frame line, and there is no dot or diagonal line. The right figure is a small, closure 

rectangle with two red frame lines, a dot in the middle, and a diagonal line. 

purple, and closure squares with one frame line in red color, while the contrasting items were 

big, blue, and open rectangles with two frame lines in yellow color, and there were a dot and 

a diagonal line inside the figure (Table 4 and Table 5).  

 

 
Figure 16. Examples of vigilance pictures used in Experiment 2. These pictures are supposed to be rejected. 
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Table 4. Category Structure of Stimuli Used in 4 dimensions in Experiment 2 

Dimension 
Dense category Sparse category 

Target item Contrast item Target item Contrast item 
Shape of figure 0 1 0 1 
Color of frame line 0 1 … … 
Color of figure 0 1 … … 
A dot in the middle  0 1 … … 

Note. The numbers 0 and 1 refer to the values of each dimension. The “…” represents the varied randomly  

features. 

 

Table 5. Category Structure of Stimuli Used in 8 dimensions in Experiment 2 

Dimension 
Dense category Sparse category 

Target item Contrast item Target item Contrast item 
Shape of figure 0 1 0 1 
Color of frame line 0 1 … … 
Number of  
frame line 

0 1 … … 

Color of figure  0 1 … … 
Size of figure 0 1 … … 
Open or Closure 0 1 … … 
A dot in the middle 0 1 … … 
Diagonal line 0 1 … … 

Note. The numbers 0 and 1 refer to the values of each dimension. The “…” represents the varied randomly 

features. 

 

Same as in Experiment 1, the figure shape, the figure color, the color of frame line, and the 

presence of dot, had a same probability to make up the arbitrary rule in the sparse category. 

Also, there were eight vigilance pictures added in the testing phase (Figure 16). The statistical 

density of the dense category was as same as Experiment 1, 0.50 in the high dimensionality 

condition, and the sparse category was 0.13. In the condition of low dimensionality, the 

density of the dense category was 0.36, while the sparse category was 0.10. 
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Procedure 

Except for the stimuli replaced by artificial geometrics, the experimental procedure was 

exactly as same as Experiment 1. Participants were asked to learn the “Ziblet” category in the 

training phase, and they needed to judge whether the each figure appearing in the testing 

phase belonged to the “Ziblet” category or not. 

Results 

Thirteen subjects were excluded from data analyses, due to their failure to reject the 

pictures for vigilance testing. A 2 (Density) × 2 (Dimensionality) × 2 (Learning condition) 

mixed-design ANOVA revealed that the 3-way interaction is not significant (F(1, 70) = 3.02, 

MSe = 0.03, p = .09, η2 = 0.04). The 2-way interaction was found significant between 

Learning condition and Density (F(1, 70) = 14.42, MSe = 0.04, p < .01, η2 =0.17), but not 

significant either between Learning condition × Dimensionality (F(1, 70) = 0.00, MSe = 

0.03, p = .97, η2 = 0.00), or Denisty × Dimensionality (F(1, 70) = 0.16, MSe = 0.04, p = .69, 

η2 = 0.02). Significant main effects of Density (F(1, 70) = 29.49, MSe = 0.06, p < .01, η2 = 

0.30), Learning condition (F(1, 70) = 5.12, MSe = 0.04, p < .05, η2 = 0.07) and 

Dimensionality (F(1, 70) = 5.52, MSe = 0.04, p < .05, η2 =0.07) were found. 
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The interaction effect of Density × Learning condition was significant when the 

material dimensionality was high (F(1, 70) = 19.16, MSe = 0.06, p < .01, η2 =0.22), but not 

significant when the material dimensionality was low (F(1, 70) = 2.66, MSe = 0.08, p = .11) 

(See Figure 17). 

 

Same as found in Experiment 1, the interaction between Density and Learning condition 

appeared only when the material dimensionality was high. This result strengthens the 

challenge to Sloutsky’s theory with a different type of stimuli. Also, the categories were ill 

defined in Kloos and Sloutsky (2008) as “Most Ziblets have long wings and dark antennas”, 

whereas the categories in this experiment as well as in the studies of Shepard et al. (1961) and 

Love (2002) were well defined, as there was no exception to the definition of categories. 
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Figure 17. Mean accuracy scores by category type and learning condition in Experiment 2. 
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Therefore, this result shows that whether the categories were ill defined or well defined is not 

the cause for the discrepancy in the past research results. Considering the results of both 

Experiment 1 and Experiment 2, the dimensionality of material plays a crucial rule in 

category learning, which is not considered in Sloutsky’s theory. 
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Experiment 3 

Both Experiment 1 and Experiment 2 consistently indicate the dimensionality of 

materials can influence the category learning performance that is not predicted by Sloutsky’s 

theory. That is, the expected interaction effect between the density of category structure and 

the learning manner only occurs for high dimensionality materials. Since the interaction 

effect is assumed to result from that the dense and sparse category structures respectively 

triggers the compression-based system and the selection-based system, it is worth examining 

the learning system on which the participants rely to learn different category structures, 

specifically when the stimulus materials are of different complexities. 

Following the fourth experiment of Kloos and Sloutsky (2008), this experiment added 

diagnostic items in the test phase in order to examine which learning system was activated. 

The diagnostic items could be separated to two classes. One looked dissimilar to the target 

item but shared with the target item the arbitrary rule feature (i.e., the defining feature of the 

rule). The other looked similar to the target item but did not have the rule feature of the target 

item. If the dissimilar-appearance diagnostic item was classified to the target category, then it 

was indicated that the selection-based system was activated and. On the other hand, when the 

compression-based system was activated, participants should classify the similar-appearance 

diagnostic items to the target category.  
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Participants 

Ninety-one participants were recruited in this experiment with traffic reimbursement of 

one-hundred NT dollars per hour for their expense of time and money. The participants were 

randomly assigned to one of four conditions (learning the dense vs. sparse category under 

low vs. high dimensionality). The age of these participants ranged from 18 to mid 30s. All 

participants reported that his/her vision was normal or corrected to normal. 

Stimulus 

The stimuli in this experiment were the same as in Experiment 1, except that two types 

of the diagnostic items were added. Each stimulus was composed of two types of features: the 

rule feature and the appearance feature. The rule feature was the one that could predict the 

target category 100% correct, whereas the appearance feature could not. The diagnostic item 

ACRT looked dissimilar to the target item (i.e., the appearance features had values of the 

contrasting category) but had the same value of the rule feature as the target item did. On the 

contrary, the diagnostic item ATRC looked similar to the target item (i.e., the appearance 

features had values of the target category) but had a different value of the rule feature as the 

target item did. The same naming principle could be applied to the other two types of items 

(ACRC and ATRT). For the low dimensionality materials, the feature of the number of fingers 

was set as the arbitrary rule. For the high dimensionality materials, the arbitrary rule was 

defined by the relation between the length of fingers and the shading of body. Table 6 and 

Table 7 all four types of items in the low and high dimensionality condition respectively. 
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Table 6. Examples of Stimuli Used in the Low Dimensionality Condition of Experiment 3 Presented in Abstract 

Notation 

Feature 
ATRT ATRC ACRT ACRC 

    
Appearance         
Length of wings 0 0 1 1 
Shading of antennas 1 1 0 0 
Shading of body 0 0 1 1 

Rule         
Number of fingers 0 1 0 1 

Note. The numbers 0 and 1 refer to the values of each dimension. 

The statistical density of the dense category was 0.38 in the high dimensionality 

condition, and the sparse category was 0.01. In the condition of low dimensionality, the 

density of the dense category was 0.36, while the sparse category was 0.1. 

 

Table 7. Examples of stimuli used in the high dimensionality condition of Experiment 1 presented in abstract 

notation.  

Feature 
ATRT ATRC ACRT ACRC 

Ex 1 Ex 2 Ex 1 Ex 2 Ex1 Ex 2 Ex 1 Ex 2 
Appearance         
Length of tail 0 0 0 0 1 1 1 1 
Length of wings 0 0 0 0 1 1 1 1 
Shading of antennas 1 1 1 1 0 0 0 0 
Number of fingers 0 0 0 0 1 1 1 1 
Shading of buttons 0 0 0 0 1 1 1 1 
Number of buttons 1 1 1 1 0 0 0 0 

Rule         
Length of fingers 1 0 1 0 1 0 1 0 
Shading of body 0 1 1 0 0 1 1 0 

Note. There are two examples of each type of items (Ex1 and Ex2). The number 0 and 1 refer to the values of 

each dimension.  
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Procedure 

In the beginning of the training phase, the experimenter firstly introduced all the features 

(the number of features depend on the experimental condition) to the participants. And then 

both verbal and graphic information of the target items were provided on the computer screen. 

The verbal rules were showed first, and then the graphs of the target stimuli were presented in 

a random sequence (eight pictures were also chosen randomly). Participants were told that 

they would receive the information of target category only in the training phase and 

instructed to learn both the verbal and graphical messages in a self-pace manner. After the 

training phase, the participants were given a recognition task incidentally. In this task, the 

participants were asked to recognize whether the present stimulus was seen in the training 

phase. Sixteen stimuli including eight ATRT pictures (which were showed in the training 

phase) and eight ACRC pictures were presented in a random sequence. The data of the 

participant who could answer correctly at least eleven out of sixteen trials in the recognition 

task were included in further data analyses. 

In the testing phase, the participants were asked to judge for every single stimulus 

whether or not it belonged to the target category. The stimuli used in the testing phase were 

eight ATRC pictures and eight ACRT pictures presented in a random sequence. 

Results 

Twelve participants were excluded from data analyses due to failure to meet the criterion 

of the recognition task. The proportion of the diagnostic items classified to the target category 
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is shown in Figure 18. Apparently, the participants rely on the selection-based system to make 

classification for the low dimensionality materials (the right panel), regardless of the density 

of category structure, as a large amount of the ACRT items are classified to the target category 

and so are a small amount of the ATRC items. However, for the high dimensionality materials, 

only when learning the sparse category structure, there are more ACRT items than ATRC ones 

classified to the target category (the left panel).  

 

Figure 18. Mean accuracy scores by category type and learning condition in Experiment 3. 

 

A 2 (Dimensionality) × 2 (Density) × 2 (Foil type: ATRC and ACRT) mixed-design 

ANOVA was conducted. The 3-way interaction was not significant (F(1, 75) = 1.75, MSe = 

4.34, p = .19, η2 = 0.02). There were significant main effects on Density (F(1, 75) = 10.54, 
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MSe = 2.20, p < .01, η2 = 0.12) and Foil type (F(1, 75) = 126.16, MSe = 4.34, p < .01, η2 

=0.63), but not on Dimensionality (F(1, 75) = 1.60, MSe = 2.20, p = .21, η2 = 0.02). The 

interaction effects were significant for Foil type × Density (F(1, 75) = 8.71, MSe = 4.34, p 

< .01, η2 =0.10) and Foil type × Dimensionality (F(1, 75) = 48.44, MSe = 4.34, p < .01 , η2 

= 0.39), but not significant between Density × Dimensionality (F(1, 75) = 0.99, MSe = 2.20, 

p = .32 , η2 = 0.01).  

The interaction under different complexities was examined for understanding how the 

dimensionality of materials would influence which category learning system was activated. 

The interaction effects were significant for Foil type × Density in the high dimensionality 

condition (F(1, 75) = 7.54, MSe = 8.68, p < .01, η2 =0.09), but not significant in the low 

dimensionality condition (F(1, 75) = 1.11, MSe = 8.68, p = .30). However, the difference on 

the proportion of target category was not significant for ACRT and ATRC (F(1, 75) = 0.02, 

MSe = 2.20, p = .88). This result is not congruent with the fourth experiment of Kloos and 

Sloutstky (2008). 

In order to understand whether this result is reliable at the individual level, a K-means 

cluster analysis was conducted to classify the participants to the similarity-based group 

(classifying the ACRT items as target category) or the rule-based group (classifying the ATRC 

items as target category), according to the distance of their testing response to each typical 

response of the groups. 
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Since there were eight ATRC and eight ACRT items presented in the testing phase, 

presumably the most typical rule-selection participant would classify all ACRT items and zero 

ATRC items as the target category, while the most typical compression-based participant 

would classify all ATRC items and zero ACRT items as the target category. Thus, the response 

in the testing phase could be recoded as a vector with the elements as the numbers of ACRT 

and ATRC items to be classified as the target category. The typical rule-based response was set 

as [8, 0] and the typical similarity-based response as [0, 8]. The distance between the 

participant’s response vector and the typical response vector was the basis to classify 

participants in K-means cluster analysis. Table 8 shows the number of participants in each 

group and each dimensionality condition. 

 

Table 8. Summary table of people using similarity or rule-based representations. 

 Low dimensionality High dimensionality 
Density Similarity Rule Similarity Rule 
Dense 4 18 16 4 
Sparse 1 20 6 10 

 

Wickens (1989) proposed the concept of “conditional independence model” describing 

the relationship of a 3-way mixed design which is “two factors are conditionally unrelated at 

all levels of the third”. To illustrate the relationship between the statistical density and the 

activating learning system when using different complexities of materials by this 3-way table, 

the conditional independence model was tested. If it was rejected, the density and the learning 
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system are correlated at either one or all levels of the dimensionality of materials. According 

to Wickens (1989), the expected frequencies for this model is adjusted to 

μ
ijk

= 𝑥ij+ 𝑥+jk
𝑥+j+

                Equation 7 

the degrees of freedom for it would be (a − 1)b(c− 1), where a, b, and c are the levels of 

each factor. The degrees of freedom are 2 in the present condition. 

As a consequence, the hypothesis of conditional independence model was rejected (Χ² 

= 8.64, ɸ = 0.33, p<.05), which indicated that the dimensionality is a moderator for the 

association between density and the activating learning system. To analyze further, the factors 

density and the system used by participants were found to be independent in the condition of 

low dimensionality (Χ² = 1.88, p = .10), but were not independent in the condition of high 

dimensionality (Χ² = 6.76, ɸ = 0.43, p <.01). These findings demonstrate that people would 

use the corresponding learning system determined by the category structure when the 

materials are more complex, but only use the selection-based (rule-based) system to learn 

categories when the materials are simpler, namely, when the feature of stimuli has only four 

dimensions. 
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General Discussions 

The main purpose of this study is to examine Sloutsky’s theory, specifically focusing on 

examining the interaction between learning paradigm and density of category structure. 

According to Sloutsky’s theory, the category structures of different densities induce different 

systems for learning categories. The compression-based system is assumed to process 

information in a compressed fashion like the way of the visual perception system. Thus, it is 

suitable to learn dense structures. In contrast, the selection-based system is assumed to learn 

categories in the way of focusing the specific features, which is suitable to learn sparse 

structures.  

However, the Sloutsky’s theory seems not able to account for well some past research 

results (e.g., Love, 2002; Shepard, et al., 1961). The possible reasons may include the 

dimensionality of materials and the type of stimulus (natural vs. artificial). Therefore, the aim 

of current study is to examine the effects of these two variables within Sloutsky’s 

experimental regime. 

Experiment 1 manipulated the dimensionality of materials (low vs. high) with the 

attempt to check whether the interaction effect between the learning paradigm and the density 

of category structure is moderated by the dimensionality of materials. Following Sloutsky’s 

theory, the choice of learning systems should only depend on the density of category, 

regardless of the dimensionality of materials. However, the results show that the interaction 

effect between the learning paradigm and the density is significant only for the high 
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dimensionality materials, which implies that the dimensionality of materials may moderate 

the correspondence between the learning system and the category structure. Experiment 2 

used the artificial geometrics as stimuli with the same design of Experiment 1 and acquired 

the same results of Experiment 1. Obviously, the type of stimulus is not a factor to change the 

performance pattern. Experiment 3 further examined by which system the participants 

learned categories. The proportion of diagnostic items (ACRT and ATRC) to be classified to 

the target category suggests that for the low dimensionality materials, the selection-based 

system is used at all times whereas for the high dimensionality materials, only when learning 

the sparse categories the selection-based system is used. These three experiments converge on 

that the density is not the only factor to trigger the learning system. 

Study Restrictions 

Before further discussion, there are some restrictions in this study needed to mention 

here. First, when the complex stimuli are employed, although these experiments all report an 

interaction effect between the learning condition and the categorical density, the data patterns 

are not exactly consistent with the results of Kloos and Sloutsky (2008). According to 

Sloutsky’s theory, the selection-based system should dominate the learning of the sparse 

categories, thus, the performance of supervised learning condition should be better than 

unsupervised learning. However, both Experiment 1 and 2 show that participants perform 

fairly well both in the supervised learning and the unsupervised learning condition for 
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learning the sparse categories. This result indicates that the sparse categories do not favor the 

selection-based system comparing with the compression-based system. One possible 

explanation for this is that the task of learning sparse categories is too easy for the 

participants, indicating that the arbitrary feature can be easily found even in the condition of 

unsupervised learning. Another explanation is that the averaged data could not reveal the 

individual differences of the strategy use. For example, Figure 18 shows an unexpected data 

pattern that both ACRT and ATRC items have the same probability for being classified to the 

target category in the learning of complex stimuli (the leftmost panel of Figure 18), however, 

the result of K-means cluster analysis demonstrates that participants do use similarity 

representation to categorize under such condition (see the leftmost panel of Figure 19).  

Figure 19. Bar chart of people using similarity or rule-based representations in Experiment 3. 
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Second, the supervised and unsupervised learning conditions used in the current study 

are not the only learning methods to examine Sloutsky’s theory. Ashby, Maddox, and Bohil 

(2002) called a method as “observational training” in that the category label is presented 

before the stimulus and participants do not need to do any motor response, whereas another 

method as “feedback learning” in that the category label is presented as a feedback to 

participants after they make a response. They compared the observational training and the 

feedback training, concluding that the feedback training is more effective to learn a category 

structure requiring information integration for optimal responding. The supervised learning 

condition in the current study gave the explicit verbal rules without asking participants to do 

responses, which is similar to observational learning. Thus, the participants may perform 

better during learning dense categories in the supervised learning condition if the learning 

method is replaced by feedback learning paradigm. On the other hand, the unsupervised 

learning used in the current study is called intentional unsupervised learning (Love, 2002). 

That is, participants know that they would be tested after training. There is another way of 

unsupervised learning called incidental unsupervised learning that participants would not be 

noticed to do the category learning. For example, participants are told to judge the 

pleasantness of each figure but not learn the category of figures. According to Sloutsky’s 

theory, the interaction between category structure (density) and learning conditions should 

exist no matter which kinds of learning paradigms (either observational learning or feedback 
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learning and either intentional unsupervised learning or incidental unsupervised learning) are 

selected to use. For the intention to compare the results with Kloos and Sloutsky (2008), the 

current study used the exactly same learning conditions. However, it is worth the try to 

examine other kinds of learning conditions in the future for the purpose of generalizability. 

 

Statistical Density 

The statistical density represents a calculable index of category structure. It is 

convenient to use especially in the situation that stimuli have multiple dimensions. However, 

the statistical density still has some limitations. First, the concept of a dense category or a 

sparse category is not clearly differentiated. Kloos and Sloutsky (2008) designed the high 

density condition in different experiments by setting the statistical density level from 0.39 to 

1.0, and the density of sparse condition was 0.17 to nearly 0. Because the definition of 

density (dense or sparse) is involved in the prediction of Sloutsky’s theory, it is necessary to 

locate the exact point that can firmly differentiate a dense or a sparse category for further 

applications. For example, whether a category structure is a dense one or not while the 

statistical density of it is 0.25. Second, according to the results of the current study, the 

statistical density cannot represent all characteristics of materials. It seems that the density 

simplifies a category structure into a simple number, but the density considers the regularity 

only. All the three experiments show that the materials dimensionality is also a critical factor 
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to affect human category learning. Third, there is a natural obstacle for the stimuli with few 

dimensions to apply this index in experiment. In this study, 0.1 is the best number we could 

require when the stimuli have only four dimensions, following the experimental setting of 

Kloos and Sloutsky (2008), and it would be larger if the number of dimensions is smaller. 

Therefore, if an experiment is conducted by using stimuli consisting of only one or two 

dimensions, it is hard to generate an appropriate condition of sparse categories. In other 

words, this is also the restriction of Sloutsky’s theory. 

 

Multiple Systems for Category Learning 

The concept of multi-system model or multi-representation accounted for category 

learning has been widely discussed and accepted in recent years (Anderson & Betz, 2001; 

Ashby, et al., 1998; Erickson & Kruschke, 1998; Nosofsy, Clark, and Shin, 1989; Rouder & 

Ratcliff, 2004, 2006). There are many pieces of neural evidences supporting the point of view 

of the multi-system theory (Ashby et al., 1998; Cincotta & Seger, 2008; Kloos & Sloutsky, 

2008; Nomura & Reber, 2008; Seger, 2008; Seger & Cincotta, 2002;). 

Most of the multi-systems theories state that those systems work in a winner-takes-all 

manner to learn categories. For instance, the rule module (RULEX; Nosofsky, Palmeri, & 

McKinley, 1994) competes with the exemplar module (the exemplar-based random walk 

model; Nosofsky & Palmeri, 1997) in ACT-R (Anderson & Betz, 2001), and the explicit 
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system competes with the implicit system in COVIS (Ashby, et al., 1998), and the 

compression-based system competes with the selection-based system in Sloutsky (2010) 

theory. The winner system is often assumed to be the one, which can best adapt to the 

category structure. For instance in the COVIS model, the explicit system is assumed to 

outperform the implicit system on learning the unidimensional structure (Ashby, et al. 1998). 

Also, in Slouthsky’s (2010) theory, it is assumed that the sparse and the dense categories are 

learned respectively by the selection-based and the compression-based systems. However, the 

results of this study challenge Sloutsky’s (2010) assumption. All three experiments do not 

show the full dissociation between the selection-based and the compression-based systems on 

learning the sparse and dense categories. Rather, when learning the simpler stimuli, the 

selection-based system is favored at all times. Accordingly, it suggests that the Sloutsky’s 

(2010) argument about the dissociation between systems is insufficient. Further, across these 

three experiments, it is obviously to see that the selection-based system dominates in most of 

the cases, except when a dense category structure with complex stimuli is to learn. The 

condition of dense category structure with complex stimuli is relatively harder than other 

conditions to learn in terms of the number of stimulus dimension and the cognitive loading to 

compare similarity information. Therefore, although Sloutsky (2010) claimed that the default 

learning system is determined by category structure, i.e., the statistical density, the present 

results indicate that the default learning system should always be the rule-based system. 
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This assertion might as well have a neural-based support. For instance, Nomura et al. 

(2007) conducted an fMRI study and found that the medial temporal lobe was associated with 

the learning of unidimensional category structure, whereas the caudate was associated with 

the learning of two-dimensional structure. The prefrontal lobe, normally thought to be 

relevant to working memory (Cohen et al., 1997; Cohen, Botvinick, & Carter, 2000; 

D’Esposito et al., 1999) and the implementation of the explicit system in COVIS, is assumed 

to be in charge of the rule learning in a hypothesis-testing manner (see Ashby, et al., 1998).  

Since many pieces of evidences show that the cortex matures later than the midbrain 

areas but takes a leading position in adults (Pfefferbaum et al., 1994; Sowell et al., 1999; 

Sloutsky, 2003), the COVIS model assumes, for adult participants, the explicit system is 

implemented first when learning categories. Following this idea, it is reasonable to assume a 

leading position for the selection-based system to take. Although Sloutsky’s studies have 

mentioned this fact of the maturing speed of different brain areas (Kloos & Sloutsky, 2008; 

Sloutsky, 2010), he does not have a same conclusion with COVIS model as taking the 

rule-based subsystem as the default learning system. 

 

Dimensionality of Materials  

In spite of the dimensionality of materials has normally treated as a control factor in the 

past researches (e.g., Alfonso-Reese, et al., 2002; Smith, Murray, and Minda, 1997), there 
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were still several researches indicating that the dimensionality of materials could influence 

human’s learning strategies and category perception (Minda & Smith, 2001; Livingstion, et 

al., 1998; Nosofsky, et al., 2005). For instance, Minda and Smith (2001) indicated that the 

outperformance of the prototype model over the exemplar-based model became more 

significant when fitting to the data collected with high-dimensional categories. Also, Verguts, 

Ameel, and Storms (2004) proposed a modified ALCOVE model by adding the dimensional 

factor and found it could fit the data better. However, these studies did not mention the 

relationship between the dimensionality of stimulus and other factors in category learning. 

 The results of all these three experiments in the current study clearly reveal that various 

levels of the stimulus dimensionality would lead to different strategy (or representation) uses 

on category learning. Linking the current results and Sloutsky’s (2010) theory as a foundation, 

it becomes more clear the idea that the stimulus dimensionality moderates the use of the 

learning strategy. However, the dimensions used in this study are psychologically separable. 

Past research indicated that the psychologically separable dimensions would induce 

attentional shift easily, while the psychologically integral dimensions are hard to use the 

selective attention (Nosofsky & Palmeri, 1998). Thus, the current results may not be extended 

to explain the tasks with the stimulus consisting of psychologically integral dimensions. To 

further examine the effect of stimulus dimensionality, it would be a great idea for the future 

studies to consider the characteristic of stimulus dimension (psychologically separable vs. 
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integral). 

 

Base rate of categories 

The number of target items and contrasting items is not manipulated in the current study. 

Although Medin and Edelson (1988) concluded that if the base rate information is conveyed 

that it is trivial, the consequences of categorization task would not be influenced by the base 

rate. Also, Spellman (1993) illustrated an inconsistent phenomenon for people to use base 

rate information. He claimed that the base rate information is perceived by participants 

accurately in the training phase, because it is an implicit learning process, but participants 

cannot apply the base rate in the testing phase appropriately because they need to access the 

information explicitly. These results indicate that the number of target or contrasting items 

may not be a critical factor influencing category learning behavior. However, the calculation 

of between-category entropy consists of both the target items and the contrasting items. If the 

entropy of contrasting items can affect the overall category structure, it is a reasonable doubt 

that the base rate of contrasting items can affect the categorization behavior as well. Also, the 

number of target items appearing in the training phase is not discussed both in the current 

study and the research of Kloos and Sloutsky (2008). It would be interesting to find out if the 

pattern of learning performances could be changed by manipulating the number of items in 

the training phase or the ratio of target items/ contrasting items in the testing phase. 
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Conclusion 

This research reveals several facts about category learning. First, the dimensionality of 

materials can moderate the association between category structure and learning performances. 

Sloutsky’s theory cannot describe the categorization behaviors when using low 

dimensionality stimuli. Second, people tend to use the rule-based system to learn categories 

when the dimensionality of materials is low, which is incongruent with Sloutsky’s prediction 

and implicates that the rule-based system is the default learning system for categorization. 

These findings indicate that the role of stimulus dimensionality is important in category 

learning and category representation. However, there are still some restrictions and issues 

needed to be clarified, e.g. the various kinds of learning conditions, the characteristics of 

stimulus dimensions (psychologically separable or integral), and the base rate of categories, 

much more work on these topics in the future is clearly required. 
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Appendix 

Examples of calculating statistical density 

To illustrate the procedure of calculating density more clearly, there is a simple example. 

Suppose that there are two dimensions of materials (e.g., shape and color), and two levels of 

each dimension (black and white, square and circle), therefore there are four possible 

combinations of shapes and colors. In this experiment, all the target items are squares in 

black, while all the contrasting items are circles in white. In addition, assume that the number 

of target items is same as contrasting items.  

To calculate the density, the probability of each possible combination in within- and 

between-category is required. Within-category represents the target items only, which are all 

square in black in this example. Therefore, the probability of black-square is 1.0. 

Between-category represents both target and contrasting items, therefore, the probability of 

black-square is 0.5, as well as the probability of white-circle in between-category (see Table 

10). 

Table 9. Matrix of within-category and between-category probability in example 1 

 Black Square Black Circle White Square White Circle 
Within-category 1.0 0 0 0 
Between-category 0.5 0 0 0.5 

 

After knowing the probability of each feature combination, now we continues to 

computing the Hdim , the dimensional entropy. Dimensional entropy has two parts, 

between-category and within-category (equation 4-1 and 4-2). To calculate, it is necessary to 
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consider the probability matrices from the aspect of dimensions first. There is only one kind 

of stimuli in target category (black squares only), so the probability matrix of color in the 

within-category (pblack and pwhite) would be [1.0 0], and the probability matrix of shape 

in the within-category (psquare and pcircle) would also be [1.0 0]. And there is another 

possibility (white circle) when we consider the between-category probability, so the matrix 

will be [. 5 . 5] both in dimensions of color and shape (Table 11). Put these matrices into 

equation 4-1 (for within-category) and 4-2 (for between-category) respectively, then the 

Hwithin
dim will be get as 0, and Hbetween

dim  will be 2 (have not considered the attention weight 

yet).  

Table 10. Probability matrix of with- and between-category from the aspect of dimensions in example 1 

 Color Shape 
 Black White Square Circle 

Within-category 1.0 0 1.0 0 
Between-category 0.5 0.5 0.5 0.5 

Next is Hrel, the relational entropy. Before it is computed, the number of relations needs 

to be considered first. According to equation 5, there is only one relation between all two 

dimensions. To calculate the relational entropy, we use the matrix of feature combination 

which is displayed in Table 9. The matrix for within-category is [1.0 0 0 0], and the 

matrix for between-category is [0.5 0 0 0.5] in Table 10. Put these numbers of 

probability into equation 5-1 and 5-2 respectively. Then we can get the Hwithin
rel  as 0, while 

the Hbetween
rel  is 1 (have not considered the attention weight yet). Finally, we set wi as 1, 

and wk as 0.5, so Hwithin = 1 ∗ 0 + 0.5 ∗ 0 = 0，Hbetween = 1 ∗ 1 + 0.5 ∗ 2 = 2 And the 
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density will be 1 −  0
2� = 1. 

Suppose that the feature combination is more complicated. Now the target items are 

composed of half black squares and half white circles, while the contrasting items are 

composed of black circles and white squares. The probability matrix of within- and 

between-category is shown in Table 12 and the probability matrix from the aspect of 

dimensions is shown as Table 13.  

Table 11. Matrix of within-category and between-category probability in example 2 

 Black Square Black Circle White Square White Circle 
Within-category 0.5 0 0 0.5 
Between-category 0.25 0.25 0.25 0.25 
 
Table 12. Probability matrix of with- and between-category from the aspect of dimensions in example 2 

 Color Shape 
 Black White Square Circle 

Within-category 0.5 0.5 0.5 0.5 
Between-category 0.5 0.5 0.5 0.5 

In this example, there are two kinds of stimuli in the target items (black squares and 

white circles). Assuming they are equal in number, then the probability matrix of colors in the 

within-category (pblack and pwhite) would be [0.5 0.5], as well as shapes (psquare and 

pcircle) when calculating the Hwithin
dim  (see Table 13). Therefore, Hwithin

dim  is 2 (have not 

considered the attention weight yet). On the other hand, there are four kinds of stimuli when 

considering between-category, mentioned as black squares, black circles, white squares and 

white circles, but the probability of matrix will as same as [0.5 0.5] when considering 

each dimension (half stimuli are in black when considering the dimension of color, and half 
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stimuli are squares when considering the dimension of shape) (see Table 13). Therefore, the 

Hbetween
dim  is also 2 (have not considered the attention weight yet). Compare to the calculation 

of dimensional entropy, it is more straightforward to compute the Hrel, just use the matrix 

[. 5 0 0 . 5] for the within-category and the matrix  [. 25 . 25 . 25 . 25] for the 

between-category which are displayed in Table 12. Therefore, Hwithin
rel  is 1 and Hbetween

rel  is 

2. Do not forget to consider the attention weight, then the Hwithin = 1 ∗ 2 + 0.5 ∗ 1 = 2.5, 

and the Hbetween = 1 ∗ 2 + 0.5 ∗ 2 = 3 . So the density is 1 −  2.5
3� = 0.167  in this 

example. 

The fact which can be observed easily in the two examples above is that the density is 

markedly larger when there is less variability (all are black squares in example 1) in the target 

items (within-category), while the density become lower when the variability is larger in the 

target items (density as 0.167 in example 2). Therefore, the variability of target items is one 

of the dominant factors which can affect density. Still, the salience of features and the 

similarity of stimuli have some common ideas with density, but not the same (Sloutsky, 2010). 

The salience of each feature would affect density because the equations of density are 

composed of weighted entropy, but it simplifies the calculation of salience. It assumes that 

the saliences of features are all the same, and using a ratio to represent the relation between 

the attentional weight of dimensional and relational entropy instead of calculating attentional 

weights of all features. Also, the similarity is a part of concern in the concept of density, high 
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similarity within target category may cause a high density. However, the equations of density 

include both dimensional entropy and relational entropy. It is said that high density could be 

generated by not only high similarity but less relational entropy. 
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