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Abstract

In this thesis, we define the tropical derivatives and anti-derivatives. When we differ-

entiate two identical tropical polynomials, we might get two different functions. In order

to overcome the difficulties, we restrict the polynomials to largest coefficient polynomials

to avoid unpredictable results when taking derivatives. The definitiion of the tropical

derivatives is quite different from the definition of classical derivatives. In particular, we

have
d

dx
an � x�n = an � x�n−1. To extend it linearly, we obtain

d

dx
[an � x�n ⊕ an−1 �

x�n−1 ⊕ .... ⊕ a1 � x ⊕ a0] = an � x�n−1 ⊕ an−1 � x�n−2..... ⊕ a1 � x ⊕ −∞. We will

explain why we use this kind of definition. The derivatives are helpful in understanding

more about tropical geometry, and it carries out some information similar to classical

derivatives. Finally, we discuss how to define and find tropical anti-derivatives for tropi-

cal polynomials.

Keywords : Tropical derivatives, tropical anti-derivatives, tropical polynomials.
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中中中文文文摘摘摘要要要

中中中文文文摘摘摘要要要

在這篇論文中，我們定義了熱帶導數和熱帶反導數。當我們對兩個相同的熱帶多項式求導

數時，可能會得到不同的函數。為了克服此困難，我們限制在最大係數多項式下才求導數。熱

帶導數的定義與古典導數相當不同。特別的是，我們有
d

dx
an � x�n = an � x�n−1。將它線

性化，我們得到
d

dx
[an � x�n ⊕ an−1 � x�n−1 ⊕ .... ⊕ a1 � x ⊕ a0] = an � x�n−1 ⊕ an−1 �

x�n−2..... ⊕ a1 � x ⊕ −∞。我們將會解釋為什麼使用這種定義。導數對了解熱帶幾何很有幫

助，它也引出了一些與古典導數相似的資訊。最後，我們討論如何定義及求熱帶多項式的熱帶

反導數。
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Chapter 1

Introduction

Tropical geometry is developed by the Brazilian mathematician and computer scien-

tists Imre Simon, who pioneered the min-plus algebra in 1980. From that day, many

mathematicians put into research of combinations, algebraic geometry, statistics, and

other sciences such as biology. It has become a new division of mathematics. And the

adjective “tropical“ is given in honor of the Brazilian mathematician Imre Simon.[1]

Along the short, tropical geometry is piecewise linear algebraic geometry and study

the image of classical geometry, so we can develop some important properties as in clas-

sical geometry. In fact, it has had many corresponding versions of classical theorems in

algebraic geometry.

In this thesis, we define the tropical derivatives and the tropical anti-derivatives. The

derivative is useful to understand more about tropical geometry. In chapter two, we men-

tion of the largest coefficient polynomials, which appear frequently in tropical derivatives.

For example, f(x) = x�2 ⊕ x⊕ 4 and g(x) = x�2 ⊕ 2� x⊕ 4 are functionally equivalent,

and g(x) = x2 ⊕ 2x⊕ 4 is the largest coefficient polynomial. We draw some gragh about

these polynomials in order to understand more about the largest coefficient polynomial.

Further more, we try to judge whether it is the largest coefficient polynomial or not.

In chapter three, we differentiate the Puiseux series which is known as an algebraically

closed field and define the tropical derivatives. It is amazed that some properties of the

tropical derivatives are satisfied in tropical derivatives as in classical derivatives, such as

the product rule and the chain rule.

1
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In chapter four, we integrate tropical polynomials, and we define the tropical anti-

derivatives. It has some difference between classical and tropical anti-derivatives. We

might restrict some conditions to obtain a largest coefficient polynomial when integrating

tropical polynomials.

2
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Chapter 2

Arithmetic of the Max-plus Semiring

In tropical geometry, we deal with the semiring (R
⋃
{-∞},

⊕
,
⊙

). As we see, it is

a semiring over the union of real numbers and -∞ equipped with two binary operations,

maximum and additions. We will denote the semiring by T.

Definition 2.1 Let a and b be scalars. Then we redefine the basic arithmetic operations

of addition and multiplication for this scalars as follows:

a⊕ b = max{a, b}

a� b = a + b

In words, the tropical sum of two numbers is their maximum, and the tropical prod-

uct of two numbers is their sum. These two operations also satisfy the commmutative law,

associative law, and distributive law. We will introduce these properties in the preceding

article. Here are some examples of how to arithemetric in this number system.

Example 2.1

2⊕ 5 = max{2, 5} = 5

2� 5 = 2 + 5 = 7

3
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We find many of the familiar axioms of arithmetic remain valid in tropical mathematics:

• associativity:

(a⊕ b)⊕ c = a⊕ (b⊕ c)

(a� b)� c = a� (b� c)

• commutativity:

a⊕ b = max{a, b} = b⊕ a

a� b = a + b = b + a = b� a

• distributivity:

a� (b⊕ c) = a�max{b, c}

= max{a + b, a + c}

= a� b⊕ a� c

(a⊕ b)� c = max{a, b} � c

= max{a + c, b + c}

= a� c⊕ b� c

Here are some numerical examples to show distributivity:

Example 2.2

2� (5⊕ 9) = 2� 9 = 11

2� 5⊕ 2� 9 = 7⊕ 11 = 11

4
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Example 2.3

(7⊕ 13)� 8 = 13� 8 = 21

7� 8⊕ 13� 8 = 15⊕ 21 = 21

Besides, we can easily find out the additive identity for ⊕ and the multiplicative identity

for �.

• Neutral element of tropical addition:

The additive identity for ⊕ is −∞, which is called 0T = −∞. The reason is for any a

∈ R, max{a,−∞ }= a if and only if a ⊕−∞= a.

• Neutral element of tropical multiplication:

The multiplicative identity for � is 0, which is called 1T = 0. The reason is for any a ∈ R,

a � 0 =a + 0 = a.

Remark 2.1 Note that there is no tropical subtraction, which is why T is a semi-ring.

Because for a 6= −∞, there does not exist b∈ T such that a ⊕ b = −∞. For example,

the equation 2 ⊕ x = 1 has no solutions x at all. However, there do exist multiplicative

inverse in T. We shall define the tropical division a� b = a− b.

Above all, we also can define the tropical semiring in different ways. For examples,

a ⊕ b = min{a, b}, which is called the min-plus tropical semiring. In this paper, we will

focus on the max-plus semiring.

And we can discuss the tropical monomial in one variable :

a� x�n = a� x� x......� x︸ ︷︷ ︸
n times

A tropical polynomial is the tropical sum of a collection of tropical monomials.

Definition 2.2 [3](Tropical Polynomials).A tropical polynomial f(x) is of the form

f(x) = a0 ⊕ a1 � x⊕ a2 � x�2 ⊕ ......⊕ an−1 � x�n−1 ⊕ an � x�n,

where n is a positive integer, and a0, ...an ∈ T

5
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Eveluate f(x), we obtain

f(x) = max{a0, a1 + x, a2 + 2x, ....., an−1 + (n− 1)x, an + nx}

Remark 2.2 In classical polynomials, x means 1T · x, but 1T = 0, so x = 0� x.

Example 2.4

f(x) = x�3 ⊕ 4� x�2 ⊕ 7� x⊕ 5

= max{0 + 3x, 4 + 2x, 7 + x, 5}

The graph of f(x) is drawn as Figure2.1.

Figure 2.1: The graph of f(x) = x�3 ⊕ 4� x�2 ⊕ 7� x⊕ 5

6
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2.1 Largest Coefficient Polynomials

In classical algebra, we all understand two distinct polynomials are certainly differ-

ent, that is, if f(x) 6= g(x), f(x) − g(x) 6= 0. However, in tropical algebra, two distinct

tropical polynomials may define the same function . We say them functionally equivalent

under the idea of largest coefficients.

Definition 2.3 [3] Let f(x) and g(x) are two tropical polynomials. If f(x) and g(x)

define the same function, we say that f(x) and g(x) are functionally equivalent.

We refer to [2] and consider two one-variable polynomials as follows :

Example 2.5 f(x) = x�2⊕x⊕ 4 and g(x) = x�2⊕ 2�x⊕ 4 are functionally equivalent.

when x ≥ 2,

f(x) = x�2 ⊕ x⊕ 4

= max{2x, x + 0, 4}

= 2x

= x� x

g(x) = x�2 ⊕ 2� x⊕ 4

= max{2x, x + 2, 4}

= 2x

= x� x

when x ≤ 2,

f(x) = x2 ⊕ x⊕ 4

= max{2x, x + 0, 4}

= 4

7
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g(x) = x2 ⊕ 2� x⊕ 4

= max{2x, x + 2, 4}

= 4

Figure 2.2: The graph of f(x) = x�2 ⊕ x⊕ 4

From figure 2.2, we observe the line y = x is under the graph of f(x). So we can move

the line y = x up to intersect the graph of f(x) at exactly one point. This point is the

intersection of x�2 and 4. And the slope of the line y = x is less than y = 2x and greater

than y = 4. We recognize f(x) and g(x)are functionally equivalent. Now we are going to

use such ideas of largest coefficient polynomials to simply the work in tropical derivative.

At the same time, we find that f(x) = x�2⊕ a� x⊕ 4, a ≤ 2 and g(x) = x�2⊕ b� x⊕ 4,

b ≤ 2 are functionally equivalent.

Lemma 2.1 Two tropical polynomials are functionally equivalent if and only if they rep-

resent the same under the idea of largest coefficients.

8
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Next, we are going to introduce the coefficient of x�2 term is not 0.

Example 2.6 f(x) = 2� x�2 ⊕ 3� x⊕ 4 and g(x) = 2� x�2 ⊕ x⊕ 4,

when x ≥ 1,

f(x) = 2x�2 ⊕ 3� x⊕ 4

= max{2x + 2, x + 3, 4}

= 2x + 2

= 2� x�2

g(x) = 2� x�2 ⊕ x⊕ 4

= max{2x + 2, x + 0, 4}

= 2x + 2

= 2� x�2

when x ≤ 1,

f(x) = 2� x�2 ⊕ 3� x⊕ 4

= max{2x + 2, x + 3, 4}

= 4

g(x) = 2� x�2 ⊕ x⊕ 4

= max{2x + 2, x + 0, 4}

= 4

9
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Figure 2.3: The graph of f(x) = 2� x�2 ⊕ 3� x⊕ 4

As example 2.6, to graph f(x)(see figure 2.3), we draw three lines in the (x, y)

plane : y = 2x + 2, y = x + 3, and the horizontal line y = 4. The value of f(x) is

the largest y-value such that (x, y) is one of these three lines, i.e., the graph of f(x) is

the higher envelop of the lines. So we can judge that f(x) = 2x�2 ⊕ 3 � x ⊕ 4 is the

largest coefficient polynomial. At the same time, we find the coefficients of these three

terms 2x�2, 3� x and 4 satisfying 4-3 = 3-2. It encourges us to investigate how to judge

whether the tropical polynomials is the largest coefficient one or not.

Definition 2.4 f(x) = an � x�n ⊕ an−1 � x�n−1 ⊕ .....a1 � x ⊕ a0 is the largest coeffi-

cient polynomial, if for all ai, 0 ≤ i ≤ n, there doesn’t exist any functionally equivalent

polynomials whose coefficients can replace ai with larger numbers.

Two distinct largest coefficient polynomails are certainly not functionally equivalent.

Example 2.7 f(x) = 0� x�2 ⊕ 5� x⊕ 7 and g(x) = 3� x�2 ⊕ 4� x⊕ 5,

10
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See Figure2.4 and 2.5 as bellows.

Figure 2.4: The graph of f(x) = x�2 ⊕ 5� x⊕ 7

Figure 2.5: The graph of f(x) = 3� x�2 ⊕ 4� x⊕ 5

Lemma 2.2 [5][Another definition of largest coefficient]Let f(x) = an � x�n ⊕ an−1 �

x�n−1⊕...⊕ar�x�r be a tropical polynomial, where ai 6= −∞, i = r, r+1, ..., n. Then ai is a

largest coefficient of f(x) if and only if there exists some x0 ∈ R such that f(x0) = ai�x�i0 .

11
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Moreover, how do we determine if a largest coefficient polynomial is a largest coef-

ficient one or not? We refer to[5] and solve this problem by the following theorem.

Theorem 2.1 [5] Let f(x) = an � x�n ⊕ an−1 � x�n−1 ⊕ ... ⊕ ar � x�r be a tropical

polynomial, then g(x) = bn � x�n ⊕ bn−1 � x�n−1 ⊕ ....⊕ br � x�r is the largest coefficient

polynomial of f(x), where

bi = max{{ai} ∪ {
aj(k − i) + ak(i− j)

k − j
| r ≤ j < i < k ≤ n}}.

Example 2.8 Let f(x) = 5 � x�4 ⊕ x�2 ⊕ 1. By theorem2.1, we get the corresponding

largest coefficient polynomial g(x) = 5� x�4 ⊕ 4� x�3 ⊕ 3� x�2 ⊕ 2� x⊕ 1

Example 2.9 Let f(x) = 4�x�3⊕ 5�x�2⊕ 7�x⊕ 5, the largest coefficient polynomial

of f(x) is g(x) = 4� x�3 ⊕ 5.5� x�2 ⊕ 7� x⊕ 5.

12
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Chapter 3

Tropical Derivatives

3.1 Differentiating the Puiseux Series

Let K = C(t) be the algebraic closure of the field of rational functions with coefficients

from the field of complex numbers. An element a(t) in K can be expressed as a Puiseux

series.

Definition 3.1 [2](Puiseux series)

A Puiseux series a(t) is of the form :

∑∞
i=k Cit

i
n , k ∈ Z, n ∈ N, Ck ∈ C

we define the field of Puiseux series K to be the collection of all Puiseux series.

Example 3.1 a(t) = 3t

−1

2 + t−1 + 5t−3 ∈ K.

Definition 3.2 [5] Define a order

Ord : K 7−→ Q

13
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as followings. Let a be a nonzero element in K, for all a =
∑∞

i=k Cix
i
n ∈ K

Ord(a) := min
i
{ i
n
} =

k

n

If a = 0,

Ord(a) := −∞.

Example 3.2 a = 3t
−1
2 + t−1 + 5t−3 ∈ K, Ord(a) = min{−1

2
,−1,−3} = −3.

Definition 3.3 Let f ∈ K[x], f = anx
n + an−1x

n−1 + ... + a1x + a0, we define the

tropicalization of f to be the tropical polynomial f , such that

f = ord(a)� y�n ⊕ ord(an−1)� y�n−1 ⊕ ...⊕ ord(a1)� y ⊕ ord(a0)

Remark 3.1 For any tropical polynomial g ∈ T[y], there exists at least one f ∈ K[x]

such that g = f .

Example 3.3

a = 5t

−1

2 + t−2 + 5t−4 ∈ K, Ord(a) = −4

b = 8t6 + t2 + 5t−1 ∈ K, Ord(b) = −1

c = t2 + t ∈ K, Ord(c) = 1

f(x) = ax5 + bx3 + cx

f(x) = Ord(a)� x�5 ⊕Ord(b)� x�3 ⊕Ord(c)� x

= −4� x�5 ⊕ (−1)� x�3 ⊕ (1)� x

Definition 3.4 [2] Let q� y�n be a tropical monomial, we define the tropical derivative

of q � y�n as the following :

d

dy
q � y�n = q � y�n−1

14
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Remark 3.2 We explain the reason we give this definition. Soppose q � y�n is the trop-

icalization of f(x) = a(t)xn. That is q = Ord(a(t)).

f ′ =
da(t)xn

dx
= na(t)xn−1

The tropicalization of f ′ is Ord(na(t))� x�n−1 which is just Ord(a(t))� x�n−1. Because

n is a constant, it will have no effect on the order of derivative.

Obviously, the tropical derivative is quite different from the classical derivative.

To extend it linearly, we will have the next section.
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3.2 The Definition of Tropical Derivatives

Since we get the conclusion in last section, we extend a tropical monomial linearly

and this will be the definition of the tropical derivative for the rest of the paper.

Definition 3.5

Given f(y) = an � y�n ⊕ an−1 � y�n−1 ⊕ .....a2 � y�2 ⊕ a1 � y ⊕ a0 a largest coefficient

polynomial, where ai ∈ K, 0 ≤ i ≤ n

d

dy
f(y) = an � y�n−1 ⊕ an−1 � y�n−2.....⊕ a2 � y ⊕ a1 ⊕−∞

Example 3.4

a = 3t

−3

2 + t−2 + 5t−6 ∈ K, Ord(a) = −6

b = 5t5 + t2 + 5t−1 ∈ K, Ord(b) = −1

c = 6t3 + 4t2 ∈ K, Ord(c) = 2

f(x) = ax4 + bx3 + cx

f ′(x) = 4ax3 + 3bx2 + c

f(x) = ord(a)� x�4 ⊕ ord(b)� x�3 ⊕ ord(c)� x

= (−6)� x�4 ⊕ (−1)� x�3 ⊕ 2� x

f ′(x) = ord(4a)� x�3 ⊕ ord(3b)� x�2 ⊕ ord(c)

= (−6)� x�3 ⊕ (−1)� x�2 ⊕ 2

Since we restrict our polynomials to largest coefficient polynomials, the derivative of

a largrst coefficient polynomial must be a largest coefficient polynomial. We refer to [2]

and use a lemma from it.

Lemma 3.1 Let f(x) = an � x�n ⊕ an−1 � x�n−1 ⊕ ... ⊕ a0. Let di = ai−1 − ai, then

di ≥ di−1 ,i.e. ai−1 − ai ≥ ai−2 − ai−1, for all 1 ≤ i ≤ n ⇐⇒ f(x) is a largest coefficient

polynomial.

Example 3.5 f(x) = x�3 ⊕ 3� x�2 ⊕ 5� x⊕ 6

16
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Figure 3.1: The graph of f(x) = x�3⊕3�x�2⊕5�x⊕6 is a largest coefficient polynomial

Corollary 3.1 [2] Let f(x) = an�x�n⊕an−1�x�n−1⊕...⊕a1�x⊕a0. If f(x) is a largest

coefficient polynomial, then
d

dx
f(x) = an � x�n−1 ⊕ an−1 � x�n−2.....⊕ a2 � x⊕ a1 ⊕−∞

is a largest coefficient polynomial.

Proof. By Lemma2.1, di ≥ di−1, for all 1 ≤ i ≤ n. The derivative of f(x) is an � x�n−1 ⊕

an−1�x�n−2.....⊕a2�x⊕a1, trivial, we can get di ≥ di−1,∀1 ≤ i ≤ n−1. The derivative

is also in largest coefficients.

Example 3.6 Letf(x) = x�2 ⊕ 3 � x ⊕ 6 is the largest coefficient polynomial, then
d

dx
f(x) = x�1 ⊕ 3 is also in largest coefficients.

17



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

3.3 Properties of the Tropical Derivatives

In classical derivative, the product rule is the quite fundamental property. Refer-

ing to[2], as below, we will show that the product rule are also hold in tropical derivatives.

3.3.1 Product Rule

Let f(x) and g(x) be tropical polynomials of degree n and m respectively.

f(x) = a0 ⊕ a1 � x⊕ a2 � x�2 . . .⊕ an � x�n

g(x) = b0 ⊕ b1 � x⊕ b2 � x�2 . . .⊕ bm � x�m

Now, before we start to check the product rule, we must confirm that the product of

these two largest coefficient polynomials is still a largest coefficient polynomial.

Lemma 3.2

The product of f(x) and g(x) is a largest coefficient polynomial.

Proof. Without loss of generality, we assume that the degree of f(x) is greater than

the degree of g(x), f(x) � g(x) =
n+m∑
k=0

(
∑
i+j=k

ai � bjx
�k),the coefficient of the x�r term is

max
i+j=r

{ai � bj},

Suppose iu + ju = r − 1

iv + jv = r

iw + jw = r + 1

18
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aiv � bjv − aiu � bju = aiv + bjv − aiu − bju

= aiv − aiu + bjv − bju

≥ aiw − aiv + bjw − bjv

= aiw + bjw − aiv − bjv

= aiw � bjw − aiv � bjv

We get max
i+j=r

{aibj} − max
i+j=r−1

{aibj} ≥ max
i+j=r+1

{aibj} − max
i+j=r

{aibj}, by Lemma 3.1, we get

f(x)� g(x) is a largest coefficient polynomial.

Now, we begin to check the product rule is also hold in tropical derivatives.

Theorem 3.1 (f(x)� g(x))′ = f ′(x)� g(x)⊕ f(x)� g′(x)

Proof. By induction on m, m = 0

f(x)� g(x) = (a0 ⊕ a1 � x⊕ a2 � x�2 ⊕ . . .⊕ an � x�n)� b0

= a0 � b0 ⊕ a1 � b0 � x⊕ a2 � b0 � x�2 ⊕ . . .⊕ an � b0 � x�n

(f(x)� g(x))′ = −∞⊕ a1 � b0 ⊕ a2 � b0 � x⊕ . . .⊕ an � b0 � x�n−1

= b0 � (a1 ⊕ a2 � x⊕ . . .⊕ an � x�n−1)

= b0 � f ′(x)

= −∞� f(x)⊕ b0 � f ′(x)

= g′(x)� f(x)⊕ g(x)� f ′(x)

= f ′(x)� g(x)⊕ f(x)� g′(x)

Suppose this is true for m = k

When m = k+1, deg(g(x)) = k+1,

f(x)� g(x) = f(x)� (b0 ⊕ b1 � x⊕ b2 � x�2 ⊕ . . .⊕ bk � x�k)⊕ f(x)� bk+1 � x�k+1

= f(x)� (b0 ⊕ b1 � x⊕ b2 � x�2 ⊕ . . .⊕ bk � x�k)⊕

(a0 ⊕ a1 � x⊕ a2 � x�2 ⊕ . . .⊕ an � x�n)� bk+1 � x�k+1
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= f(x)(b0 ⊕ b1 � x⊕ b2 � x�2 ⊕ . . .⊕ bk � x�k)⊕ a0 � bk+1x
�k+1

⊕a1 � bk+1 � x�k+2 ⊕ a2 � bk+1 � x�k+3 ⊕ . . .⊕ an � bk+1 � x�k+n+1

(f(x)� g(x))′ = f(x)� (b1 ⊕ b2 � x⊕ . . .⊕ bk � x�k−1)⊕ f ′(x)(b0 ⊕ b1 � x . . .⊕ bk � x�k)

⊕a0 � bk+1 � x�k ⊕ a1 � bk+1 � x�k+1 ⊕ a2 � bk+1 � x�k+2

⊕ . . .⊕ an � bk+1 � x�k+n

= f(x)� (b1 ⊕ b2 � x⊕ . . .⊕ bk � x�k−1)⊕ f ′(x)(b0 ⊕ b1 � x . . .⊕ bk � x�k)

⊕bk+1 � x�k(a0 ⊕ a1 � x⊕ a2 � x�2 . . .⊕ an � x�n)⊕ bk+1 � x�k+1(a1 ⊕ a2 � x

. . .⊕ an � x�n−1)

= f(x)(b1 ⊕ b2 � x⊕ . . .⊕ bk � x�k−1)⊕ f ′(x)(b0 ⊕ b1 � x . . .⊕ bk � x�x)

⊕bk+1 � x�k � f(x)⊕ bk+1 � x�k+1f ′(x)

= f ′(x)� g(x)⊕ f(x)� g′(x)

Example 3.7 Let f(x) = x⊕ 4 and g(x) = x⊕ 6,

f(x)� g(x) = x� x⊕ x� 6⊕ 4� x⊕ 4� 6

(f(x)� g(x))′ = x� 0⊕ 0� 6⊕ 0� 4

= max{x, 6, 4}

f ′(x)� g(x)⊕ f(x)� g′(x) = 0� x⊕ 0� 6⊕ x� 0⊕ 4� 0

= max{x, 6, 4}

(f(x)� g(x))′ = f ′(x)� g(x)⊕ f(x)� g′(x)

In tropical derivatives, the derivative of the sum of two tropical polynomials is the

sum of their derivatives. We can check this as follows :

Theorem 3.2 (The Sum Rules) (f(x)⊕ g(x))′ = f ′(x)⊕ g′(x)

Proof. (f(x)⊕ g(x))′ = (a0 ⊕ a1 � x⊕ a2 � x�2 ⊕ . . .⊕ an � x�n ⊕ b0 ⊕ b1 � x⊕ . . .⊕ bm � x�m)′

= a1 ⊕ a2 � x⊕ . . .⊕ an � x�n−1 ⊕ b1 ⊕ b2 � x . . .⊕ bm � x�m−1

= (a1 ⊕ a2 � x⊕ . . .⊕ an � x�n−1)⊕ (b1 ⊕ b2 � x . . .⊕ bm � x�m−1)

= f ′(x)⊕ g′(x)
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Example 3.8 Let f(x) = x�2 ⊕ 3� x⊕ 2 and g(x) = x�2 ⊕ 2� x⊕ 1

(f(x)⊕ g(x)) = (x�2 ⊕ 3� x⊕ 2)⊕ (x�2 ⊕ 2� x⊕ 1)

= x�2 ⊕ 3� x⊕ 2⊕ x�2 ⊕ 2� x⊕ 1

(f(x)⊕ g(x))′ = x⊕ 3⊕ 2

= x⊕ 3

f ′(x)⊕ g′(x) = (x⊕ 3)⊕ (x⊕ 2)

= x⊕ 3

(f(x)⊕ g(x))′ = f ′(x)⊕ g′(x)

3.3.2 Chain Rule

We have yet to discuss one of the most powerful differentiation rules : the chain rule.

The rule deals with composite functions, and is also hold in tropical derivatives.

Theorem 3.3 (f(g(x)))′ = f ′(g(x))� g′(x)

Proof. f(g(x)) = a0 ⊕ a1 � g(x)⊕ a2 � (g(x))�2 ⊕ . . .⊕ an � (g(x))�n

(g(x)�n)′ = g′(x)� (g(x))�n−1 ⊕ g′(x)� (g(x))�n−1 ⊕ . . .

= g′(x)� (g(x))�n−1

(f(g(x)))′ = a1 � g′(x)⊕ a2 � g′(x)� g(x)⊕ a3 � g′(x)� (g(x))�2 . . .

⊕an � g′(x)� (g(x))�n−1

= (a1 ⊕ a2 � g(x)⊕ a3 � (g(x))�2 . . .⊕ an � (g(x))�n−1)g′(x)

= f ′(g(x))� g′(x)
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Chapter 4

Tropical Anti-derivatives

4.1 Integrating Tropical Polynomials

In classical calculus, intergration is the inverse of differentiation. Given a function f

to find a F such that F ′(x) = f(x). If such a function exists, it is called an anti-derivative

function of f. In tropical anti-derivatives, we have the motivate to see the property of it.

In Section 2.2, we mentioned f(x) = x�2 ⊕ 2 � x ⊕ 4 and g(x) = x�2 ⊕ x ⊕ 4 are

functionally equivalent. When we differentiate them, f ′(x) = x⊕ 2 and g′(x) = x⊕ 0.

When x ≥ 2, f ′(x) = x⊕ 2

= max{x, 2}

= x

g′(x) = x⊕ 0

= max{x, 0}

= x

When x ≤ 2, f ′(x) = x⊕ 2

= max{x, 2}

= 2

22



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

g′(x) = x⊕ 0

= max{x, 0}

= 2

We find f ′(x) = g′(x). That’s why we use the idea of the largest-coefficient polyno-

mials. Because if we wouldn’t use it, we will get unpredictable results.

Now, if we use the integral symbol,
∫
x ⊕ 2 = x�2 ⊕ 2 � x ⊕ c, c is an arbitrary

constant. But only when 2 − 0 ≥ c − 2, 4 ≥ c, x�2 ⊕ 2 � x ⊕ c is a largest coefficient

polynomial.

Definition 4.1 (Basic Intergration rules)

We say F (x) is an anti-derivative of f(x), if
dF (x)

dx
= f(x). Let G(x) be another anti-

derivative, G(x) and F (x) differ by a constant c. Thus, we define
∫
f(x)dx = F (x) + c.

Definition 4.2

Let f(x) be a tropical polynomial. We say a tropical polynomial F (x) is a tropical anti-

derivative of f(x), if
dF (x)

dx
= f(x).

Remark 4.1 Let f(x) = an � x�n ⊕ an−1 � x�n−1 ⊕ .....a1 � x⊕ a0, then

F (x) = an � x�n+1 ⊕ an−1 � x�n.....⊕ a1 � x�2 ⊕ a0 � x,

which is an anti-derivative of f(x).

Remark 4.2 Obviously, if F (x) is an anti-derivative, then F (x) ⊕ c is also an anti-

derivative.

Definition 4.3 Let f(x) = an � x�n ⊕ an−1 � x�n−1 ⊕ .....a1 � x⊕ a0,

∫
f(x)dx = an � x�n+1 ⊕ an−1 � x�n.....⊕ a1 � x�2 ⊕ a0 � x⊕ c,

where c is a constant.

Theorem 4.1 Let f(x) = an�x�n⊕an−1�x�n−1⊕...⊕a1�x⊕a0, where ai ∈ K, 0 ≤ i ≤ n.

If f(x) is a largest coefficient polynomial, then
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∫
f(x)dx = an � x�n+1 ⊕ an−1 � x�n.....⊕ a1 � x�2 ⊕ a0 � x⊕ c

is also a largest coefficient polynomial. And c must satisfy a0 − a1 ≥ c− a0.

Proof. By Lemma2.1, let di = ai−1 − ai, di ≥ di−1, for all 1 ≤ i ≤ n. The anti-derivative

of f(x) is an�x�n+1⊕ an−1�x�n.....⊕ a1�x�2⊕ a0�x⊕ c, trivial, we can get di ≥ di−1,

for all 1 ≤ i ≤ n−1 and a0−a1 ≥ c−a0 is known. So the anti-derivative is also in largest

coefficients.

Example 4.1 f(x) = 5 � x�3 ⊕ 6 � x�2 ⊕ 7 � x ⊕ 8 is a largest coefficient polynomial,

then
∫
f(x)dx = 5� x�4 ⊕ 6� x�3 ⊕ 7� x�2 ⊕ 8� x⊕ c,

where c is a constant satisfying 8 − 7 ≥ c − 8, i.e. c ≤ 9. It is a largest coefficient

polynomial.

Remark 4.3

•
∫
kdx = k � x⊕ c, where c is a constant.

•
∫
x�ndx = x�n+1 ⊕ c, where c is a constant.

• trivial, k � x⊕ c and x�n+1 ⊕ c are largest coefficient polynomials.
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Chapter 5

Conclusion

In summary, tropical geometry is defined in the semiring T = (R
⋃
{-∞},

⊕
,
⊙

).

As we see, it is a semiring over the union of real numbers and -∞ equipped with two

binary operations, maximum and additions. At the meantime, the commmutative law,

associative law, and distributive law are also hold under the basic arithmetic operations of

addition and multiplication. The additive identity for ⊕ is −∞, which is called 0T = −∞.

And the multiplicative identity for � is 0, which is called 1T = 0. There is no tropical

subtraction, which is why T is a semi-ring.

In proceeding, we discuss the tropical monomial in one variable. To extend it lin-

early, a tropical polynomial is the tropical sum of a collection of tropical monomials.

In tropical algebra, two distinct tropical polynomials may define the same function .

We say them functionally equivalent under the idea of largest coefficients. f(x) =

an � x�n ⊕ an−1 � x�n−1 ⊕ .....a1 � x ⊕ a0 is the largest coefficient polynomial, if for

all ai, 0 ≤ i ≤ n, there doesn’t exist any functionally equivalent polynomials whose co-

efficients can replace ai with larger numbers. Another definition of largest coefficient is

let f(x) = an � x�n ⊕ an−1 � x�n−1 ⊕ ... ⊕ ar � x�r be a tropical polynomial, where

ai 6= −∞, i = r, r + 1, ..., n. Then ai is a largest coefficient of f(x) if and only if there

exists some x0 ∈ R such that f(x0) = ai�x�i0 . However, how do we determine if a largest

coefficient polynomial is a largest coefficient one or not? we refer to [5] and solve this

problem by theorem 2.1.
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In chapter three, we begin to differentiate the Puiseux series and obtain the defi-

nition of the tropical derivatives. In classical derivatives, the product rule is the quite

fundamental property. Refering to[2], we show that the product rule and the chain rule

are also hold in tropical derivatives.

In chapter four, we discuss the anti-derivatives by integrating tropical polynomials

and define the tropical anti-derivatives. It has some restriction when integrating tropical

polynomials.
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