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Abstract

We study strict d-box representations of planar graphs. We prove that

a 4-connected planar triangulation graph G has a strict 2-box represen-

tation. We extend this result to that every planar graph has a strict

3-box representation. Our goal is to provide some fresh insights into the

current status of research in the area while suggesting directions for the

future.

keywords: interval graphs; 4-connected planar triangulation graph; strict

d-box representation.
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中文摘要 

 
本文我們探討平面圖形的嚴格 d 維矩形表示法。我們證明了四連通三角平面圖有

嚴格的二維矩形表示法，而且我們推廣到每一個平面圖都有嚴格的三維矩形表示

法。我們的目標是希望能在平面圖矩形表示法的現今地位上，提供新的洞悉,並
給未來學習者一個方向。 
 
關鍵詞：區間圖，四連通三角平面圖，嚴格 d 維矩形表示法。 
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1 Introduction

In graph theory, an intersection graph of a set system is the graph whose

vertices are the sets such that two vertices are adjacent if and only if the sets

intersect. The interval graphs were introduced to study intersecting intervals on

the real line. Each vertex v in an interval graph G = (V,E) is associated with an

interval Iv , and if two vertices are connected by an edge in G , then the intersection

of their associated intervals is nonempty. Some of the intervals may have nonempty

intersection, and the others have empty intersection.

W. T. Trotter [6] tells us that interval graphs have been characterized com-

pletely. Instead of representing a vertex by one interval it may be represented by a

specified number of intervals or an interval of higher dimensions. In the case of a

specified number of intervals, Scheinerman and West [4] proved that every planar

graph is an intersection graph such that each vertex is represented by at most three

intervals on the real line. In the case of higher dimensions, Scheinerman [3] proved

that in two dimensions two rectangles for each vertex are sufficient to represent any

planar graph. And Melinkov [2] charactherizes the planar graphs whose vertices

can be represented by horizontal intervals in the plane such that two interval are

adjacent if they can be joined by a vertical line not intersecting any other inter-

val. Duchet, Hamidoune, Las Vergnas, and Meyniel [1] proved that every maximal

planar graph has such a representation.

We adopt that a vertex is represented in higher dimensions. So we say that a

graph G has a d-box representation (i.e. d-dimensional closed intervals) if G is an

intersection graph such that the sets are closed d-boxes in Rd. In this paper, we

want to discuss the strict d-box representation, it means that a graph is a d-box

representation and no two of which have an interior point in common and such that

two boxes which intersect have precisely a (d−1)-box in common. If a graph G is a

strict 2-box representation(d = 2) , then all vertices of G are drawn as rectangles

1
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and all edges are drawn as a horizontal or a vertical line segment. If there four

edges form the four “outer corners”, then the representation is called rectangular

representation.

In 1953, Ungar [7] proved that every cubic cyclically 4-edge-connected graph

has a plane representation such that each face is bounded by a rectangle. And

Ungar showed that any plane embedding T of a cyclically 4-edge-connected planar

cubic graph G has a rectangular drawing if four vertices of degree 2 are inserted on

some edges on the outer face.

Carsten Thomassen [5] generalizing the results of Ungar, C. Thomassen obtains

a necessary and sufficient condition for a plane graph T with the maximum degree

4 ≤ 3 to have a rectangular representation when a quadruplet of vertices of degree 2

on F0(T) are designated as corners for a rectangular representation. He prove that

every planar graph is the intersection graph of a collection of three-dimensional

boxes, with intersections occurring only in the boundaries of the boxes. In 1984,

C. Thomassen [8] characterizes the graphs that have such representations in the

plane, called strict d-boxes graph if G is an intersection graph such that the sets

are closed d-boxes in Rd. These are precisely the proper subgraphs of 4-connected

planar triangulations, which we characterize by forbidden subgraphs. He prove that

every planar graph is a strict 3-box graph. And E. R. Scheinerman [3] showed that

every planar graph has a strict representation using at most two rectangles per

vertex.

In our article, we discuss a strict 2-box representation and a strict 3-box rep-

resentation .

In Chapter 1, we introduce intersection graphs, interval graphs, and the defini-

tion of a strict d-boxes representation. In Chapter 2, we introduce the definitions,

propositions and the theorem of strict 2-boxes graphs. In Chapter 3, we show a

strict 2-box representation for a 4-connected planar triangulation and then we ex-

tend to a strict 3-box representation for planar graphs. In Chapter 4, we mention

2
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some open problems and further directions of research.
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2 Strict 2-box representation

2.1 Definitions and theorems of cyclically 4-edge-connected planar graphs

and 4-connected planar triangulation graphs

In this section we give some definitions and present preliminary results. Be-

cause Theorem 2.13(Ungar, 1953 [7]) showed that a cyclically 4-edge-connected

planar graph G has a strict 2-box representation.

Definition 2.1. The graphs can be drawn in the plane without crossing edges, such

graphs are planar.

Definition 2.2. A graph G is called cubic if the degree of v is 3 for every vetex v.

Definition 2.3. A graph G is called 4-edge-connected if the removal of at least 4

edges leaves a graph such that the graph has more than one component.

Definition 2.4. A planar graph G is called cyclically 4-edge-connected planar

graph if G is cubic and G is 4-edge-connected graph.

Example 2.5. Consider the graph in Figure 1 is cyclically 4-edge-connected graph,

But the graph in Figure 2 is not cyclically 4-edge-connected graph, since the removal

of the three edges drawn by thick dotted lines leave a graph such that the graph

has more than one component.

Figure 1: A cyclically 4-edge con-

nected graph

Figure 2: not a cyclically 4-edge con-

nected graph

4
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We will discuss the strict 2-box representation for 4-connected planar trian-

gulation in section 3.1. So we gives some of the definitions for 4-connected planar

triangulation.

Definition 2.6. A graph G is called 4-connected if the removal of at least 4 vertices

leaves a graph such that the graph has more than one component.

Definition 2.7. A triangulation is a simple plane graph where every face boundary

is 3-cycle.

Definition 2.8. A graph is called 4-connected planar triangulation if the planar

graph is 4-connected and every face is 3-cycle.

Figure 3: 4-connected planar triangulation graph

Example 2.9. G is a cyclically 4-edge-connected graph and hence the dual graph

H of G is a 4-connected planar triangulation.

Figure 4: The left is a 4-edge-connected graph and the right is a 4-connected planar

triangulation

5
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The following theorem could help us to check if a given graph is 4-connected

planar triangulation. It also gives us a way to construct graphs that are not 4-

connected planar triangulation from the forbidden graphs.

Theorem 2.10 (Carsten Thomassen, Interval of Planar Graphs). The graphs which

are not proper subgraphs of 4-connected planar triangulations and which are edge-

minimal with that property are precisely the following:

(a) The triangle-free subdivisions of the Kuratowski graphs K5 and K3,3.

(b) The planar triangulations with no separating K3. (i.e. K4 and the 4-connected

planar triangulations)

(c) The graphs obtained from a wheel Wn of order n ≥ 5 by adding a vertex and

joining it to the center of the wheel(see Figure 5).

(d) Any graph obtained from K4 by subdividing one edge xy and adding an addi-

tional path of length at least 2 between the two other vertices of the K4(see

Figure 6).

(e) Any graph which is obtained from K5 with one missing edge by subdividing edges

incident with the missing edge(in such a way that the graph does not contain a

graph described under(d), see Figure 7).

(f) The graph K2 v K̄3 (see Figure 8).

Figure 5: A Wn wheel Figure 6: the graph in Theorem 2.10

(d)

6
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Figure 7: the graph in Theorem 2.10

(e)

Figure 8: K2 v K̄3

Definition 2.11. A triangle xyzx in a graph G is separating if G−{x,y,z} has

more components than G.

Example 2.12. If we remove the thick solid triangle, then the graphs(see Figure

9, 10, 11, 12) have more components. This contradicts the assumption that the

graphs are 4-connected. So the graphs are forbidden graphs of 4-connected planar

triangulation.

Figure 9: A Wn wheel Figure 10: the graph in Theorem 2.10

(d)

Figure 11: the graph in Theorem 2.10

(e)

Figure 12: K2 v K̄3

7
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2.2 Planar graphs have strict 2-box representations by at least two

boxes

Theorem 2.13. (Ungar, 1953 [7]) A cyclically 4-edge-connected planar graph G

has a plane representation(strict 2-box representation).

Because a cyclically 4-edge-connected planar graph has no separating triangle,

So we have the corollary as following:

Corollary 2.14. (C. Thomssen, 1986 [8]) Any planar graph with no separating

triangle has a strict rectangle representation.

Theorem 2.15. (C. Thomssen, 1986 [8]) A graph G is a strict rectangle graph if

and only if G is a proper subgraph of some 4-connected planar triangulation H.

We also obtain an extension of the result of Scheinerman that any planar

graph has a rectangle representation(2-box representation) such that each vertex is

represented by at most two rectangles.

Corollary 2.16. (E. R. Scheinerman, 1984 [3]) Every planar graph has a strict

rectangle representation in R2 such that each vertex is represented by at most two

rectangles.

Proposition 2.17. (C. Thomssen, 1986 [8]) Every planar graph G is the union of

two triangle free graphs.

Lemma 2.18. If G is a planar graph not containing any subgraph described in

Theorem2.12(c), then G contains a 4-connected planar triangulation if and only if

some component of G is a 4-connected planar triangulation.

8
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3 Some results on d-box representation

3.1 A strict 2-box representation for 4-connected planar triangulation

graphs

In this section we use two ways to draw the strict 2-box representation for

4-connected planar triangulation graph, and give some examples to show how to

draw them. We try to extended the way to draw a strict 3-box representation in

next section.

Definition 3.1. A graph G is a strict d-box representation if G is an intersection

graph such that the sets are closed d-boxes in Rd , no two of which have an interior

point in common and such that two boxes which intersect have precisely a (d− 1)-

box in common.

Example 3.2. If a graph G is a strict 1-box representation, then the vertex can

be drawn by a 1-dimensional closed interval and the two intervals which intersect

have precisely a 0-box in common(see Figure 13).

Figure 13: 1-box representation

Example 3.3. A graph G is a strict 2-box representation if all vertices of G are

drawn as rectangles, and all edges are drawn as a horizontal or a vertical line

segment(see Figure 14). If there four edges form the four “outer corners”, then the

representation is called rectangular representation(see Figure 15).

9
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Figure 14: A strict 2-box representa-

tion

Figure 15: a correspond rectangular

representation

We adopt that strict 2-box representation in this article is the graph in Figure

14.

Remark 3.4. By Theorem2.13, we know that a cubic 4-edge-connected planar graph

G has a strict 2-box representation. And we can think of G as a “geometric dual

graph” of interval system. That means that the strict 2-box representation is pre-

cisely the proper subgraphs of the 4-connect planar triangulations.

Example 3.5. Consider the graph G in Figure 16 is a cubic 4-edge-connected

planar graph, and G has a strict 2-box representation. Then the graph H in Figure

17 is a dual graph of G, and we can see H is a 4-connected planar triangulation

graph.

Figure 16: G is a cubic 4-edge con-

nected planar

Figure 17: H is a 4-connected planar

triangulation

10



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

The following theorem could help us to check that if a given graph has a strict

2-box representation. It also gives us the forbidden configurations for strict 2-box

representations.

Theorem 3.6. (Carsten Thomassen, 1986, [6]) If we draw a facial cycle C of a

cubic planar G as a rectangle R such that none of its corners are vertices of C, then

by Carsten Thomassen [5] this can be extended to a rectangular representation(a

strict 2-box representation) of G inside R if and only if

(a) For each vertex x not in C, there is only one set of three edges that separates x

from C, namely the set of edges incident x(see Figure 18);

(b) Each connected component of G − V (C) is joined to two opposite sides of R

and each chord of C( if any ) joins two opposite sides of R (see Figure 19);

(c) For each connected component H of G − V (C) and each edge e of G, H is in

G− e joined to at least two sides of R (see Figure 20).

Figure 18: (a) Figure 19: (b) Figure 20: (c)

Theorem 3.7. (Carsten Thomassen extension of Ungar’s result) Let G be a 4-

connected planar triangulation graph and let zyxz and zyvz be two triangles of

G(see Figure 21). Then the dual graph H of G has a strict 2-box representation

such that z corresponds to the unbounded face and such that x, y, and v correspond

to rectangles as shown in Figure 22.

11
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Figure 21: two triangles zyxz and

zyvz

Figure 22: x, y, z, v correspond to

rectangle

Proof. In order to show that the configuration in Figure 22 can be extend to a

rectangular representation of H we apply Theorem 3.6(Carsten Thomassen, 1986,

[6]). It suffices to show that none of the forbidden configurations indicated in

Theorem 3.6 occurs.

case1: One such configuration is indicated in Figure 23.Clearly, if the removal of the

three thick solid lines leaves the graph, the shaded area will be a component.

Obviously, this contradicts the assumption that G is 4-connected.

Figure 23: the removal of three thick solid lines

case2: One such configuration is indicated in Figure 24 and 25. If the removal

of the three or four thick solid lines leaves the graph, then the shaded area

will be a component.Obviously, this contradicts the assumption that G is

4-connected.

12
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Figure 24: the removal of four thick

solid lines

Figure 25: the removal of three thick

solid lines

case3: Another configuration is indicated in Figure 26 and 27. If the removal of the

three or four thick solid lines leaves the graph, then the shaded area will be a

component. Clearly, this contradicts the assumption that G is 4-connected.

Figure 26: the removal of four thick

solid lines

Figure 27: the removal of three thick

solid lines

Finally the forbidden configuration in Theorem 3.6 do not occur and the proof is

complete.

Moreover, we try to look at two examples(Example 3.8 and 3.9 ). It gives

us clear picture how to draw a strict 2-box representation, and show that the two

triangles we choose are drawn by Theorem3.7.

Example 3.8. There is a 4-connected triangulation graph in Figure 28. We choose

two triangles cdfc, and cfhc. Let the rectangle which c corresponds to be the

unbounded face, and draw d, f and h correspond to rectangles as shown in Figure

29. By Theorem 3.7, we get a strict 2-box representation.

13
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Figure 28: A 4-connected triangula-

tion graph and we choose two trian-

gles cdfc, and cfhc

Figure 29: A graph in Figure 28 corre-

sponding strict 2-box representation

We choose another two triangles and get another strict 2-box representation in

the following example.

Example 3.9. There is a 4-connected triangulation graph in Figure 30. We choose

two triangles cdac, and cdfc. Let the rectangle which c corresponds to be the

unbounded face, and draw a, d and f correspond to rectangles as shown in Figure

31. By Theorem 3.7, we get a strict 2-box representation.

Figure 30: A 4-connected triangula-

tion graph and we choose two trian-

gles cdac, and cdfc

Figure 31: A graph in Figure 30 corre-

sponding strict 2-box representation

14
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Consider G is 4-connected triangulation grpah. If we can’t find two triangles

zyxz and zuvz which is described by Theorem 3.7 in G. We can choose a triangle

zxyz in G to be a unbounded face, and draw a strict 2-box representation. That

means we can choose any triangle in G, and we have the corresponding strict 2-box

representation.

Corollary 3.10. Let G be a 4-connected planar triangulation graph and zxyz a

triangle in G(see Figure 32). Then G − z has a strict 2-box representation such

that x and y are represented as shown in Figure 33 and all other rectangles are in

the shaded square.

Figure 32: A triangle xyz Figure 33: Strict 2-box representation

of G − z with prescribed x and y

Proof. This follows from Theorem 3.7 simply by letting v be the vertex distinct

from x, y, z such that vyzv is a triangle.

Moreover, we try to look at two examples(Example 3.11 and 3.12). It gives us

clear picture how to draw a strict 2-box representation.

15
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Example 3.11. There is a 4-connected triangulation graph in Figure 34. We choose

agha, and let the rectangle which h corresponds to be the outer face, and draw

the strict rectangle representation of G − h with prescribed a and g by Corollary

3.10, and that is a strict 2-box representation in Figure 35. We get a strict 2-box

representation.

Figure 34: we choose a triangle agha Figure 35: strict 2-box representation

Example 3.12. There is a 4-connected triangulation graph in Figure 36. We choose

cdfc, and let the rectangle which f corresponds to be the outer face, and draw the

strict rectangle representation of G − f with prescribed c and d by Theorem 3.9,

and that is a strict 2-box representation in Figure 37. We get another strict 2-box

representation.

Figure 36: we choose a triangle cdfc Figure 37: strict 2-box representation

16
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3.2 A strict 3-box representation for planar graphs

In this section we mention a strict 3-box representation by extending Corollary

3.10. Now we provide some definitions and short proofs of 3-box representation for

planar graph.

Definition 3.13. If a graph G is a strict 3-box representation, then the vertex

can be drawn by a 3-dimensional closed interval and the two box which intersect

have precisely a 2-box in common(see Figure 38).

Figure 38: strict 3-box representation

By Theorem 2.10(c), we know that the graph wheel W5 is the forbidden graph of

strict 2-box representation. By Corollary 2.16, E. R. Scheinerman tells us that every

planar graph has a strict rectangle representation in R2 (strict 2-box representation)

such that each vertex is represented by at most two rectangles. We show that the

graph wheel W5 has a strict 2-box representation such that each vertex is presented

by at most two rectangles, and it can be drawn by a strict 3-box representation.

Example 3.14. A planar graph wheel W5(see Figure 39) which is the forbidden

graph of a strict 2-box representation. It can be drawn by a strict 2-box represen-

tation, and each vertex is represented by at most two rectangles(see Figure 40). We

also draw it by a strict 3-box representation, and each vertex is represented by one

box(see Figure 41).

17
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Figure 39: A

planar graph

wheel W5

Figure 40: strict

2-box represen-

tation

Figure 41: strict

3-box represen-

tation

We give some definition for the strict 3-box representation.

Definition 3.15. Suppose the boxes Bx ,By , and Bz in R3 such that Bx ⊃ {0}

× [0,k] × [0,k], By By ⊃ [0,k] × {0} × [0,k], Bz ⊃ [0,k]×[0,k] × {0}, and for i ∈

{x, y, z} and k is positive integer, Bi contains no point with positive i-coordinate.

Then we say the origin is an inner corner of the boxes Bx , By , and Bz(see Figure

42).

Figure 42: inner corner

Definition 3.16. If there exists a positive real number ε such that the box (0,ε]×(0,ε]×(0,ε]

intersects no box in the box system, then we say it is an empty inner corner.

We recall the Corollary 3.10, and we can extend to the strict 3-box represen-

tation. The following Corollary help us to check that if a given graph has a strict

18
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3-box representation.

Corollary 3.17. Let G be a 4-connected triangulation and xyzx a triangle in G.

Suppose the boxes Bx , By , and Bz is an original inner corner.Then Bx, By, Bz

can be extended to a strict box representation of G in R3 such that all other boxes

are in the box [0, 1] × [0, 1] × [0, 1], and all vertices not adjacent to z are in the box

[0, 1] × [0, 1] × [2/3, 1](see Figure 43).

Figure 43: all vertices not adjacent to z are in the box [0, 1] × [0, 1] × [2/3, 1]

We want to discuss every planar graph has a strict 3-box representation, so we

need to prove that every planar triangulation has a strict 3-box representation.

Definition 3.18. If there is no vertex in the triangle xyzx of the planar triangula-

tion graph G, then the triangle xyzx is called a facial triangle.

Theorem 3.19. Every planar triangulation G has a strict box representation in R3

such that every facial triangle except possibly one prescribed facial triangle x
′
y

′
z
′
x

′

has an empty inner corner.

Proof. Let x
′
y

′
z
′
x

′
be any triangle that we choose.If G has a separating triangle

xyzx we choose it such that the number of vertices in the component of G−{x,y,z}

not intersecting x
′
y

′
z
′
x

′
is smallest possible.

Suppose G = G1 ∪ G2 where G1 and G2 are planar triangulations with precisely

xyzx in common, and G2 contains x
′
y

′
z
′
x

′
, G1 is 4-connected or isomorphic to K4.

19
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case1: G1 is isomorphic to K4

Let G2 = xyzx = x
′
y

′
z
′
x

′
(see Figure 44). We can choose the separating

triangle xyvx. Clearly, the vertex v can be drawn the box Bv and the triangle

xyvx and yzvy have empty inner corners(see Figure 45).

Figure 44: G1 is a K4 Figure 45: The strict 3-box representation of the graph

in Figure 44.

case2: G1 is 4-connected, not k4

If G is 4-connected, we put G = G1 and let G2 = xyzx = x
′
y

′
z
′
x

′
. Then we

represent G2 such that x, y, and z are encoded as in Corollary 3.17 (If G2 has

more than three vertices, this can be done by the induction hypothesis). And

we modify the representation in Corollary 3.17.

For each vertex u in G1 −{x,y,z} which is adjacent to z we cut off from its

box a box of the form (1 − ε,1] × I1 × I2 or I1 × (1 − ε,1] × I2, where I1,

I2 are intervals and ε is a small positive number such that different values for

ε are used for different vertices u.

In other words, every vertex u can be drawn in the B1 or B2(see Figure 46).

In this way we create an inner empty conner(close to the plane with equa-

tion x=1 or y=1)for each facial triangle that contaions z. In order to achieve

the same for all other facial triangles as well we translate all other boxes

corresponding to vertices of G1 −{x,y,z} a little upwards, i.e.,the vector of

translation is of the form (0,0,ε)where ε is a small positive number and dif-

ferent values for ε are used for different vertices.

In this way each facial triangle in G1 not containing z gets an inner empty

corner close to one of the planes with equation z=1, z=1/2.
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Figure 46: B1 is the box (1 − ε,1] × I1 × I2 and B2 is the box I1 × (1 − ε,1] × I2

Since every planar graph is an induced subgraph of a planar triangulation, then

we have the following theorem.

Theorem 3.20. Every planar graph has a strict box representation in R3.

Proof. Suppose G is a planar graph, and given a vertex v in any face which is not

triangle. Drawing some edge from v to the vertices of the face, then we get a new

planar triangulation graph G
′
(see Figure 47). By Theorem 3.19, G

′
has a strict

3-box representation. If the removal of the box corresponding to the vertex v leaves

the graph G, then we get the strict 3-box representation of G. So the proof is

complete.

Figure 47: draw a vertex v in the face which is not triangle
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4 Open problems and further directions of study

In our article, we have presented the forbidden subgraph of 4-connected planar

triangulation and the strict 2-box representation. We also show that every planar

has a strict 3-box representation. There are still some open problems from our

article and we mention them in the following.

1 Does every 3-connected planar graph have a strict 2-box representation?

2 Does every 2-connected planar graph have a strict 2-box representation?
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