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ABSTRACT

This article investigates the natural hedging strategy to deal with longevity
risks for life insurance companies. We propose an immunization model that
incorporates a stochastic mortality dynamic to calculate the optimal life
insurance–annuity product mix ratio to hedge against longevity risks. We
model the dynamic of the changes in future mortality using the well-known
Lee–Carter model and discuss the model risk issue by comparing the results
between the Lee–Carter and Cairns–Blake–Dowd models. On the basis of
the mortality experience and insurance products in the United States, we
demonstrate that the proposed model can lead to an optimal product mix
and effectively reduce longevity risks for life insurance companies.

INTRODUCTION

In the past decade, annuity premiums in the United States have accounted for more
than 50 percent of life insurers’ premium income, with an average growth rate of
10.2 percent from 1988 to 2005 (American Council of Life Insurers, 2005). However,
longevity risk1—or uncertainty about long-term trends in mortality rates and the
impact on the long-term probability of survival of an individual—represents a critical
threat to private insurers because it increases the payout period and the liability
costs of providing annuities. In particular, human mortality has declined globally
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1To differentiate mortality risk from longevity risk, Cairns, Blake, and Dowd (2006a) define the
latter as uncertainty in the long-term trend in mortality rates and the former as uncertainty in
future mortality rates.
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over the course of the twentieth century.2 As Willets (2004) points out, mortality
improvements do not occur in a smooth upward fashion but rather exhibit a “cohort
effect.”3 Recent medical discoveries may increase human life spans even beyond the
currently projected mortality table used by insurance companies. These issues have
made it far more difficult for insurance actuaries to price annuity products correctly,
and the resulting inaccurate mortality assumptions lead to major risks. Therefore,
hedging longevity risks has taken on an increasingly important role for life insurance
companies.

When considering how to hedge longevity risks, most prior research investigates
mortality risk and pricing issues for annuity products (Friedman and Warshawsky,
1990; Frees, Carriere, and Valdez, 1996; Brown, Mitchell, and Poterba, 2000; Mitchell
et al., 2001). More recent studies focus on the impact of stochastic mortality changes
on life insurance and annuities (Marceau and Gaillardetz, 1999; Wilkie, Waters, and
Yang, 2003; Cairns, Blake, and Dowd, 2006a). In addition, many financial vehicles,
such as mortality derivatives and survivor bonds, have been proposed to reduce
or hedge the longevity risks of annuity. Blake and Burrows (2001) first proposed
that issuing survivor bonds4 could help a pension fund insure against the longevity
risk, and more recent studies also extend the issue of securitization of longevity
risk (e.g., Dowd, 2003; Blake, Cairns, and Dowd, 2006; Blake, Cairns, Dowd, and
MacMinn, 2006; Lin and Cox, 2005; Cox, Lin, and Wang, 2006; Denuit, Devolder,
and Goderniaux, 2007). Dowd et al. (2006) suggest that a survivor swap can serve
as a more advantageous survivor derivative than a survivor bond, because it can be
arranged at a lower transaction cost and does not require a liquid market.5

Similar to the concept of survivor swap, insurers can hedge longevity risks internally
between their own business products (life insurance and annuity), which are sensitive
in opposing ways to the changes in mortality rates. This approach provides a so-called
natural hedging strategy. If the future mortality of a cohort improves relative to current
expectations, life insurers gain a profit because they can pay the death benefit later
than initially expected, whereas annuity insurers suffer losses because they must pay
annuity benefits for longer than they initially expected. Therefore, life insurance can
serve as a dynamic hedge vehicle against unexpected mortality risk. Yet relatively few
academic papers have investigated the issue of natural hedging. Cox and Lin (2007)
suggest that natural hedging is appealing but may be too expensive to be effective
in the context of internal life insurance and annuity products. They instead propose
a pricing model for a mortality swap and provide empirical evidence to show that
insurers that exploit natural hedging by using a mortality swap can charge a lower

2Benjamin and Soliman (1993), McDonald (1997), and McDonald et al. (1998) confirm that an
unprecedented improvement in population longevity has occurred both in the United States
and worldwide.

3Willets (2004) suggests mortality improvements exhibit cyclical patterns, in which some co-
horts enjoy better improvements than others.

4Unlike the mortality bond that links the bond payments to mortality deviations, survivor
bonds (or longevity bonds) link coupon payments to the survivor index (Cairns, Blake, and
Dowd, 2006b).

5Survivor swaps are more flexible and can be tailored to suit diverse circumstances for counter-
parties (usually life insurance companies), which enables them to transfer their death exposure
without heavy regulations.
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risk premium than others. However, no discussion so far addresses product strategies
for natural hedging. This article attempts to fill this gap.

To help life insurers achieve a better natural hedging effect, we propose an immuniza-
tion model that incorporates a stochastic mortality dynamic to calculate the optimal
level of a product mix that includes both life insurance and annuities and thereby
effectively reduces longevity risks for insurance companies. Our article differs from
Cox and Lin’s (2007) in two aspects. First, whereas Cox and Lin propose a pricing
model for a mortality swap for natural hedging, we propose an immunization model
and calculate the optimal product mix ratio for natural hedging. Second, Cox and
Lin illustrate the natural hedging strategy by using the 1995 U.S. Society of Actu-
aries (SOA) basic age last table for life and annuity to measure the market price of
risk. However, their model does not consider the future dynamic of mortality. To
better capture the stochastic mortality pattern, we estimate the parameters in both
the Lee–Carter (LC) and Cairns–Blake–Dowd (CBD) models to reflect the age effect
by fitting historical U.S. mortality experience. Our numerical results demonstrate that
the proposed model indicates the optimal product mix and thus can effectively reduce
longevity risks.

The remainder of this article is organized as follows: In the section “Immunization
for Natural Hedging” section we introduce our proposed immunization models for
a natural hedging strategy for life insurers. In the next section “Modeling Longevity
Risk” section we discuss drivers of the mortality curve and model the future mor-
tality using the LC model with U.S. mortality experience. We demonstrate how to
implement our proposed model to calculate natural hedging product mix ratios for
various products and analyze some related issues with numerical examples in the
subsequent section. We discuss the model risk by comparing the results between the
LC model and the CBD model for natural hedging strategies in the following section,
and then we conclude in the last section.

IMMUNIZATION STRATEGY FOR NATURAL HEDGING

Natural hedging employs the interaction of life insurance and annuities in response to
a change in mortality to stabilize the cash flow for insurers. Compared with external
hedging tools, natural hedging does not require the insurer to find counterparties and
demands no transaction costs. As an internal vehicle, natural hedging not only helps
insurance companies diversify their mortality risk but also provides other advan-
tages. Cox and Lin (2007) show that insurers that utilize natural hedging can charge a
lower risk premium, which may increase their market share. However, in practice, it
may be difficult to implement natural hedging strategies for several reasons. First, the
durations of these two products cannot be matched easily to achieve proper hedges
because annuities generally are purchased by older consumers, whereas life insurance
policies are purchased by the young. Second, effective hedging may require insurance
companies to change their business composition, which could introduce additional
expenses or increase operational risks. To achieve an optimal hedging strategy, insur-
ers may need to reduce or increase the price of their annuity or life insurance products
to make them more or less attractive.6 The result of this price adjustment also could

6We thank the referees for pointing out this important issue.
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reduce the effect of natural hedging. In addition, some specialized insurers may be in-
duced to change their business composition internally by switching production lines
between life insurance and annuities.7 To help life insurers achieve a better natural
hedging effect, we propose an immunization model that incorporates a stochastic
mortality dynamic to calculate the optimal level of a product mix that includes both
life insurance and annuities.

Assume an insurer sells two types of products: life insurance and annuity. The total
liability (V) of the insurer equals the sum of the liabilities for the different businesses,
as in Equation (1)

V = Vlife + Vannuity, (1)

where Vlife is the expected liability of life insurance policies, and Vannuity is the
expected liability of annuity policies.

On the basis of the concept of modified duration,8 we posit that the effect of a mortality
rate change on insurance total liability (V), under a constant force of mortality rate
(μ) assumption, can be measured by mortality duration, as in Equation (2)

DV
μ = dV

dμ
· 1

V
. (2)

We extend the immunization theory proposed by Redington (1952) to deal with
longevity risk because the effect of mortality changes on the liability of life insurers
is similar to that of an interest rate change. The effect of mortality changes on total
liability can be expressed by the Taylor expansion, as follows:

�V =
(

dVlife

dμ
+ dVannuity

dμ

)
�μ + 1

2

(
d2Vlife

dμ2 + d2Vannuity

dμ2

)
(�μ)2 + · · · (3)

To achieve the immunization strategy for the mortality change, we can obtain the
optimal product mix by setting Equation (3) equal to zero, such that �V = 0. When
considering the first-order approximation, the immunization strategy can be achieved
by Equation (4):

(
dVlife

dμ
+ dVannuity

dμ

)
�μ = 0. (4)

We further denote the mortality duration of liability for life insurance as Dlife
μ = dVlife

dμ ·
1

Vlife and the mortality duration of liability for annuity as Dannuity
μ = − dVannuity

dμ
· 1

Vannuity .

7With regard to this limitation, Dowd et al. (2006) propose the possible use of survivor swaps.
8To hedge the interest rate risk, under a constant force of interest rate (δ) assumption, the effect
of an interest rate change on the liability (V) of the insurer can be measured by modified
duration as DV = − dV

dδ
· 1

V .
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Therefore, Equation (4) can be rewritten as

Dlife
μ · ωlife − Dannuity

μ · ωannuity = 0, (5)

where ωlife = Vlife
V and ωannuity = Vannuity

V are the proportions of liability in life insurance and
annuity, respectively, and ωlife +ωannuity = 1.

However, when hedging interest rate risk, the weakness associated with using du-
ration is the assumption of a flat yield curve, which Ahlgrim, D’Arcy, and Gorvett
(2004) clearly imply is not suitable. To overcome this problem, Kalotay, Williams,
and Fabozzi (1993), Babbel, Merrill, and Panning (1997), and Gaiek, Ostaszewski,
and Zwiesler (2005) propose effective duration as an alternative risk measure, which
can also apply to measuring mortality risk. Similar to the problem of hedging inter-
est rate risk, the definition of mortality duration in Equation (2) assumes a constant
force of mortality and ignores changes or improvements in future mortality. There-
fore, we propose the effective mortality duration to measure the mortality risk. The
main advantage of the effective mortality duration is that it can capture the mortal-
ity dynamic more precisely. Equations (6) and (7) show the calculations of effective

mortality durations for life insurance and annuity (Dlife
eμ and Dannuity

eμ )

Dlife
eμ = Vlife+ − Vlife−

2 × Vlife × �μ
, (6)

and

Dannuity
eμ = − Vannuity+ − Vannuity−

2 × Vannuity × �μ
, (7)

where Vlife+ and Vannuity+ represent the liability values at higher mortality μ + �μ,
and Vlife− and Vannuity− represent the liability values at lower mortality μ − �μ.

Using the concept of effective duration to calculate the immunization strategy, we can
replace Equation (5) with the effective mortality durations by Equation (8), as follows:

Dlife
eμ · ωlife − Dannuity

eμ · ωannuity = 0. (8)

From Equation (8), we can obtain the product mix of life insurance liability proportion
ω∗

life, which is also the optimal product mix strategy for natural hedging, as in Equation
(9)

ω∗
life = Dannuity

eμ

Dannuity
eμ + Dlife

eμ

. (9)

As long as the insurers maintain a liability proportion of life insurance at ω∗
life, they

are immunized from longevity risk.
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In addition, the effect of convexity plays an important role in dealing with interest
rate risk or mortality risk, especially when it encounters a big shock. In other words,
the second-order approximation is needed. When considering the second-order ap-
proximation, the calculation of optimal product mix includes the effect of convexity.
The effect of mortality changes on insurance liability can be measured by mortality
convexity, as in Equation (10)

CV
μ = d2V

dμ2 · 1
V

. (10)

Therefore, the effective mortality convexity for life insurance and annuity (Clife
eμ and

Cannuity
eμ ), as in Equations (11) and (12), should be utilized

Clife
eμ = Vlife− + Vlife+ − 2Vlife

Vlife(�μ)2
, (11)

and

Cannuity
eμ = Vannuity− + Vannuity+ − 2Vannuity

Vannuity(�μ)2 . (12)

Thus, the change of total liability (�V) by considering both effective mortality dura-
tion and effective mortality convexity is as follows:

�V = (
Dlife

eμ · ωlife − Dannuity
eμ · ωannuity

)
�μ + 1

2

(
Clife

eμ · ωlife + Cannuity
eμ · ωannuity

)
(�μ)2.

(13)

By setting Equation (13) equal to 0,9 we can obtain the product mix of life insurance

liability proportions, ω∗
life = Dannuity

eμ + �μ
2 Cannuity

eμ

Dannuity
eμ +Dlife

eμ + �μ
2 (Cannuity

eμ −Clife
eμ )

, which is the optimal prod-

uct mix strategy for natural hedging after considering both effects of duration and
convexity.

We conduct further numerical analyses in the section “Numerical Analysis for Natural
Hedging Strategy.” For the case of a small change in mortality (10 percent mortality
shift), we use the concept of effective duration for the immunization strategy and

calculate the optimal product mix ω∗
life = Dannuity

eμ

Dannuity
eμ +Dlife

eμ
under the first-order approxi-

mation. For the case of a big change in mortality (22.5 percent and 25 percent shifts),
we further include the concept of effective convexity for the immunization strat-

egy and calculate the optimal product mix, ω∗
life = Dannuity

eμ + �μ
2 Cannuity

eμ

Dannuity
eμ +Dlife

eμ + �μ
2 (Cannuity

eμ −Clife
eμ )

, under

9For hedging longevity risk, we assume that the insurers’ objective is to maintain the total
liability unchanged, which is the conception of immunization.
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second-order approximations. In summary, as long as the insurers maintain a liability
proportion of life insurance at ω∗

life, they are immunized from longevity risk.

MODELING LONGEVITY RISK

In traditional insurance pricing and reserve calculation, an actuary treats mortality
rates as constant over time, which means unanticipated mortality improvements can
cause serious financial burdens or even bankruptcy for life insurers. In actuarial
literature, the question of how to model mortality rates dynamically continues to
represent an important issue. Earlier developments of stochastic mortality modeling
rely on the one-factor model and pioneering work by Lee and Carter (1992), whose
LC model is easily applied and provides fairly accurate mortality estimations and
population projections. Renshaw, Haberman, and Hatzoupoulos (1996) and Renshaw
and Haberman (2003) offer further analysis of the LC model.

In addition, more recent works develop two-factor mortality LC models. The most
distinguishing feature of previous models is the consideration of a cohort effect in
mortality modeling. Renshaw and Haberman (2003) apply a cohort effect, and Currie
(2006) introduces an Age-Period-Cohort (APC) model. More recently, Cairns, Blake,
and Dowd (2006b) allow not only for a cohort effect but also for a quadratic age effect
in their CBD model. Cairns et al. (2007) extend Cairns, Blake, and Dowd (2006b) by
comparing an analysis of eight stochastic models based in England and Wales with
the U.S. mortality experience.

Other developments in two-factor models (e.g., Mileysky and Promislow, 2001; Dahl,
2004; Dahl and Møller, 2005; Miltersen and Persson, 2005; Luciano and Vigna, 2005;
Biffis, 2005; Schrager, 2006) employ a continuous-time framework and thus offer
an important means to understand pricing of mortality-linked securities. Following
the most recent literature on mortality modeling, we employ stochastic mortality to
implement the optimal natural hedging strategy for life insurers.

Stochastic Mortality Models
We adopt the most cited stochastic mortality model, the LC model, as our primary
method to analyze natural hedging strategies. Moreover, we discuss model risk by
comparing the results of the LC model with the recent developed mortality model of
CBD model in the section “Impact of Model on Natural Hedging Strategy.”

We first give a brief overview of the LC model. Lee and Carter (1992) propose the
following mortality model for the central death rate mx,t for a person aged x at time t

ln(mx,t) = αx + βx kt + εx,t , (14)

where the parameter αx describes the average age-specific mortality, kt represents the
general mortality level, and the decline in mortality at age x is captured by βx. The
term εx,t denotes the deviation of the model from the observed log-central death rates
and should be white noise with zero and relatively small variance (R. D. Lee, 2000).
Once the parameters are estimated, we are able to forecast age-specific death rates
using extrapolated kt and fixed αx and βx . In this article, we assume that the force of
mortality remains constant over each year of integer age and over each calendar year,
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FIGURE 1
Trend of Probabilities of Death for 10-Year Age Group, 1959–2002
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not that the force of mortality is constant for all ages. Thus, our prediction captures
the mortality improvements among different age cohorts (i.e., the effect of mortality
changes as people get older). Let μx,t denote the force of mortality for a person aged
x at integer time t. Thus, the survival probability (px,t) for a person aged x at time t
for the next year can be calculated as px,t = exp[−μx,t] = exp[−mx,t].

Empirical Patterns of Mortality
To generate appropriate future mortality dynamics of the LC model, we analyze
U.S. mortality experience and the relevant data provided by the human mortality
database (HMD, 2005).10 We provide the empirical patterns of U.S. mortality data in
Figures 1 and 2. Figure 1 depicts the average probability of death for each 10-year age
group of men and women aged 50–90 years from 1959 to 2002. The patterns clearly
show a decreasing trend in death probabilities for each age group, and the mortality
improvement trend is more significant for older age groups. For example, in the group
of men aged 80–89 years, the probability of death is 0.1526 in 1959 and 0.1061 in 2002.
Among men in the 50–59 age group, the probability of death is 0.0140 in 1959 and
0.0075 in 2002. For women 80–89 years of age, the probability of death declines from
0.1202 in 1959 to 0.0770 in 2002, and for those aged 50–59 years, the probability of
death is 0.0073 in 1959 and 0.0045 in 2002.

We further investigate the pattern of mortality improvement on the cohort basis11

in Figure 2 for 1959 to 2002. We recognize patterns that suggest mortality improve-
ment rates increase over time among the 30–39, 50–59, 70–79, and 90–99 year age

10The HMD was created to provide detailed mortality and population data to researchers,
students, journalists, policy analysts, and others interested in the history of human longevity.
The Web address is http://www.mortality.org/.

11The improvement rate calculated on a cohort basis is qx+1,year+1−qx,year
qx,year

, where qx,t denotes the
probability that a person aged x in year t dies next year.
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FIGURE 2
Average Mortality Change Rate for 10-Year Age Cohorts, 1959–2002
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cohorts, with the exception of the male, 30–39 group. We also find that the mortality
improvement in recent years is more significant for the male, 50–59 group.

Estimation of Parameters
To better capture future stochastic mortality, we estimate the parameters in the LC
model by fitting historical U.S. mortality data from 1959 to 2002 with the HMD data.12

We estimate the parameters in Equation (14) using the singular value decomposition
method. The estimated parameters of αx , βx , and kt for different age groups of men
and women appear in Figures 3 and 4. From Figure 3, we can determine that the
mortality improvement pattern in the United States differs for men and women,
especially for middle (50–75) ages (see parameter estimates of βx).

Forecasting Survival Probability
Using the parameters estimated in the section ”Estimation and Parameters,” we fore-
cast age-specific death rates by modeling kt as a stochastic time series process. In
this article, we follow R. D. Lee (2000) to forecast kt from ARIMA process and use
ARIMA(1,1,0)13 to project kt . The ARIMA(1,1,0) process of kt can be expressed as
�kt = b0�kt−1 + et , where et denotes the random term with et ∼ N(0,σt). According
the estimates of kt in Figure 4, we find the parameter of b0 is 0.3686 for men and 0.4335
for women. We simulate kt and calculate the corresponding survival probability for
both men and women, aged 25 in the year 2003, for the future 70 years and depict
the results in Figure 5. We compare the survival probability calculated according to
the historic data with our simulated results. The dashed line represents the survival

12Due to data limitations, we cannot obtain long-term data pertaining to both life insurance
and annuity mortality experiences to generate the parameters for the proposed stochastic
mortality models for different products.

13R. D. Lee (2000) uses ARIMA(0,1,0) to project kt but notes that different data sets might be
preferable for other ARIMA process.
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FIGURE 3
Parameter Estimates in LC model: αx (Left) and βx (Right)
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FIGURE 4
Parameter Estimates of kt in LC Model
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probability for a person aged 25 years, based on the mortality rate of the year 2002,
according to the HMD. The solid line shows the mean survival probability from the
simulated results, and the dotted line represents the 95 percent confidence interval.
The simulated results show that survival probability has increased significantly, and
the magnitude of improvement is greater for men. For example, the probability that
a person aged 25 years will survive to age 80 changes from 0.3592 to 0.4912 for men
and from 0.5635 to 0.6352 for women.

NUMERICAL ANALYSIS FOR NATURAL HEDGING STRATEGY

To demonstrate our proposed natural hedging strategy, we construct a numerical
analysis for insurance companies using the LC model. We subsequently discuss model
risk by comparing the results of the LC model and CBD model. By applying the
methodology proposed in the section “Immunization for Natural Hedging,” we can
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FIGURE 5
Estimated Confidence Interval of Simulated Survival Probability for Age 25
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calculate the optimal product mix liability proportion (ω∗
life) and find the natural

hedging strategy for longevity risk. To clarify our analysis, we define the equivalent
K-ratio to explain the natural hedging strategy in different product mix settings, as
follows:

K =
ω∗

life

ω∗
annuity

· UVannuity

UVlife
, (15)

where UVlife is the liability per life insurance policy, and UVannuity is the liability per
annuity policy. The K-ratio implies that if an insurance company sells one unit of an
annuity policy, it should sell K units of life insurance policy to achieve the hedging
effect and immunize itself against longevity risk.

Basic Assumptions
Assume an insurance company sells only two products: life insurance and annuities.
The natural hedging strategy depends on the policy condition, such as issuance age,
gender, coverage period, payment method, and so on. Thus, we set up a model with
these basic assumptions in Table 1. We assume a portfolio of single premium deferred
annuity (SPDA) and whole-life insurance policies written for male customers at age
45 for annuity and 35 for life insurance.14 We also assume the payout benefit is
US$1,000,000 for life insurance policies and US$10,000 per year, paid 20 years from
the issue date, for annuity policies. For each type of product, the insurance premium
is paid by a single premium. We also conduct sensitivity analyses of these model
assumptions.

14These ages match the average issuance ages for these products in real practice.
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TABLE 1
Basis Assumptions for Insurance Products

Single Premium Deferred
Product Annuity (SPDA) Life Insurance

Age of insured 45 35
Gender Male Male
Coverage/payout benefit US$10,000 (per year) US$1,000,000
Coverage/payout benefit period (years) Whole life Whole life
Method of paying premium Single premium Single premium
Interest rate 4% 4%
Deferred period 20 None
Pricing mortality basis HMD, 2002 HMD, 2002
Forecasted mortality basis LC model LC model

Both the interest rate and the mortality rate affect the product mix ratio. However, for
the purpose of our demonstration, we focus on the mortality dynamic15 and assume
that the interest rate of the insurance product is constant, say 4 percent. Assume the
actuary uses the mortality experience in year 2002 (HMD) for the pricing assumption
and wants to hedge both systematic and unanticipated mortality improvements. If the
actuary could foresee the future dynamic of mortality and capture the real mortality
pattern in pricing, there would be no longevity risk for insurers. However, in the real
world, the actuary may not be able to capture real longevity risk in pricing, mainly
because of market competition16 or misestimations of the mortality pattern. In our
analysis, we assume that the actuary uses 2002 U.S. mortality experience in HMD
for pricing mortality basis and relies on the LC model (forecasted mortality basis) to
forecast longevity risk. The corresponding actuarial present values (the single pure
premiums17) for different type of insurance policies with different mortality basis are
presented in Table 2.

In Table 2, we compare the single premium of 10 percent mortality down shock with
that of pricing mortality basis and find that the price change accounts for −5.27 percent
for a whole life policy, −13.47 percent for 30-year term life, and −15.56 percent for 20-
year term life. In addition, the price change accounts for 6.08 percent for a whole-life
annuity policy, 5.87 percent for a 30-year term life annuity, and 4.89 percent for a 20-
year term life annuity. The results imply that the price changes caused by unexpected
mortality shock can be large; therefore, hedging longevity risks is important for life
insurance companies.

15In reality, the interest rate dynamic likely influences the natural hedging strategy, but we do
not consider it to simplify the discussion. However, we recognize that the sensitive effect
caused by the yield curve changes. Thus, an analysis of the combined effects of mortality and
interest rates would offer more realistic results and should be considered in further research.

16Pricing competition in the market often forces actuaries to lower prices to match the goals
of the sales department, such as attaining a certain growth rate, market share, or premium
income.

17The calculation of the single pure premium is based on the actuarial present value (see Bower
et al., 1997).
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TABLE 3
Product Mix Proportion (ω∗

life) and K-Ratio: Men, Single Premium

Coverage/Payout Benefit Period 20-Year Term Life Whole Life

20-year term SPDA 30.1% 49.5%
(0.364) (0.180)

30-year term SPDA 34.6% 54.6%
(0.481) (0.238)

Whole-life SPDA 35.5% 55.6%
(0.504) (0.249)

Note: Figures in parentheses represent the K-ratios.

Hedging Strategy for Two Products
In this section, we illustrate how insurers can use our proposed product mix strategy
to hedge against unexpected mortality shock. For demonstration purposes, we discuss
three different cases of mortality shocks: (1) the base case with a 10 percent mortality
shift for both annuity and insurance policies, (2) a sudden big shock with a 25 percent
mortality shift for both annuity and insurance policies, and (3) a sudden big shock with
a 25 percent mortality shift for annuity and 22.5 percent mortality shift for insurance
policies. According to our numerical findings, the effect of convexity is not significant
for a small mortality shock. Therefore, in the case of the 10 percent mortality shift,
we use only the effective durations (i.e., Equations (6) and (7)) to measure mortality
risk and ignore the effect of convexity.18 However, for the 22.5 percent and 25 percent
mortality shifts, we include the effect of convexity by using Equation (13) to measure
mortality risk in our analyses.

We calculate both the optimal product mix proportion (ω∗
life) and the K-ratio in

different product settings under our basic assumptions and report the results in
Table 3. According to Table 3, the optimal product mix proportion for natural hedg-
ing of a whole-life insurance product is 55.6 percent for men. Therefore, as long as the
liability for life insurance accounts for 55.6 percent of the total liability, the insurer can
achieve a natural hedging effect. The corresponding K-ratio for such product mix is
0.249. In other words, if the insurance company sells one unit of whole-life SPDA to a
cohort of men, it should sell 0.249 units of whole life insurance to hedge its longevity
risk.

In Table 3, we observe that the optimal product mix proportion becomes smaller
and the K-ratio higher as the coverage period of a life insurance become shorter.
For example, for a product mix that contains a whole-life SPDA and 20-year term
life, the corresponding optimal product mix proportion is 35.5 percent (smaller than
55.6 percent for whole life), and the K-ratio is 0.504 (higher than 0.249 for whole
life). As mentioned in the section “Immunization Strategy for Natural Hedging,”

18The impact of ignoring the effect of convexity on the value of both product mix proportion
and K-ratio under the case of 10 percent mortality shift in Table 3 is less than 0.002.
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the optimal product mix of the life insurance proportion is ω∗
life = Dannuity

eμ

Dannuity
eμ +Dlife

eμ
. Thus,

when the coverage period of life insurance becomes shorter, the optimal product mix
proportion decreases because the effective duration of the life insurance increases and
the effective duration of the annuity remains the same. The results of the K-ratio in
our numerical analysis imply that compared with its sale of whole-life policies, the
insurer will require more units of term-life policies to hedge against the longevity risk
associated with whole-life annuity contracts.

In contrast, both the optimal product mix proportion and the K-ratio decrease as the
coverage period of SPDA becomes shorter in Table 3. For example, for a product
mix with a 20-year term SPDA and whole-life product, the optimal product mix
proportion is 49.5 percent (smaller than 55.6 percent for whole-life SPDA), and the
K-ratio is 0.18 (lower than 0.249 for whole-life SPDA); with a 30-year term SPDA
and whole-life product, the optimal product mix is 54.6 percent and the K-ratio is
0.238, again smaller than the whole-life SPDA. In these cases, the optimal product
mix proportion decreases because the effective duration of life insurance remains
the same and the effective duration of the annuity becomes smaller. The results of
the K-ratio in our numerical analysis imply that compared with a short-term annuity
policy, a long-term policy requires more life insurance policy units to achieve a natural
hedging effect.

In Table 4, we report the corresponding calculated results for women, whose patterns
of optimal product mix proportion and K-ratios are similar. In most cases,19 the
corresponding optimal product mix proportion for women is smaller and the K-ratio
higher than those for men. For example, for a product mix containing a whole-life
SPDA and whole-life insurance, the optimal product mix proportion for women is
49.3 percent (less than 55.6 percent for men), and the corresponding K-ratio for women
is 0.279 (higher than 0.249 for men). From the section “Modeling Longevity Risk,” we
know that the survival probability of both men and women has increased significantly
but the magnitude of improvement is greater for men. Thus, compared with those for
men, the optimal product mix proportions of women are smaller because the effective
duration of life insurance is larger, and the effective duration of the annuity smaller

than those for men.20 The K-ratio (K = ω∗
life

ω∗
annuity

· UVannuity
UVlife

) of women in most cases is

higher because the liability ratios of annuity to life insurance per policy (
UVannuity

UVlife
)

for women are generally higher than those of men. We also find that the K-ratio for
women in the case of a term-life policy is almost 30–50 percent higher than that of
men. The result implies that women have longer life expectancies, so the insurer may
need to sell more life insurance policies to hedge for its longevity risks for women in
our numerical examples.

19For the product mix with 20-year term annuity and whole life, both the corresponding optimal
product mix proportion and the K-ratio for women are smaller than those for men.

20In the setting of our example, the mortality improvement has greater impact on the liability
of annuity than on life insurance. Thus, the optimal product mix proportion of women is
smaller than that of men.
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TABLE 4
Product Mix Proportion (ω∗

life) and K-Ratio: Men and Women Comparison

20-Year Term 20-Year Term Whole Life Whole Life
Life for Men Life for Women for Men for Women

20-year term SPDA 30.1% 22.3% 49.5% 40.2%
(0.364) (0.478) (0.180) (0.171)

30-year term SPDA 34.6% 27.6% 54.6% 47.2%
(0.481) (0.705) (0.238) (0.253)

Whole-life SPDA 35.5% 29.3% 55.6% 49.3%
(0.504) (0.776) (0.249) (0.279)

Note: Figures in parentheses represent the K-ratios.

TABLE 5
Product Mix Proportion (ω∗

life) and K-Ratio: Deferred Period Effect

Product Mix Men Women

Whole-life SPDA (deferred 10 years) 41.5% 36.2%
(0.300) (0.320)

Whole-life SPDA (deferred 20 years) 55.6% 49.3%
(0.249) (0.279)

Whole-life SPDA (deferred 30 years) 69.5% 63.5%
(0.165) (0.204)

Note: Figures in parentheses represent the K-ratios.

In the sensitivity analysis, we further analyze the impacts of deferred period, age,
and coverage effects. For simplicity and without loss of generality, we illustrate these
effects only for whole-life insurance policies and display the simulation results in
Tables 5 and 6. In Table 5, we investigate the impact of a deferred period of a whole-
life SPDA on the optimal product mix proportion and K-ratio. For both men and
women, the optimal product mix proportion increases as the deferred period becomes
longer because the effective duration of the life insurance remains the same and the
effective duration of the annuity becomes larger. In Table 5, the K-ratio decreases with
respective to an increase in the deferred age because the liability ratio of annuity to life
insurance per policy decreases as the deferred period of a whole-life SPDA becomes
longer. The longer the period before the insured receives the annuity payment, the
shorter is the annuity payout period. Thus, longevity risk is considered less significant
as the deferred period of a whole-life SPDA becomes longer. The results of the K-ratio
imply that in our numerical example, insurers require fewer life insurance policy
units to achieve a natural hedging effect.

We provide the age effects on the optimal product mix proportion and K-ratio in
Table 6. The optimal product mix proportion becomes smaller and the corresponding
K-ratio higher as the issue age of SPDA increases. For example, for men as their
issue age of SPDA increases from 35 to 55, the K-ratio increases from 0.173 to 0.349;
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TABLE 6
Product Mix Proportion (ω∗

life) and K-Ratio: Age Effect

Product Mix Men Women

Whole-life SPDA (issued at age 35, attend age 65) 56.8% 50.2%
(0.173) (0.192)

Whole-life SPDA (issued at age 45, attend age 65) 55.6% 49.3%
(0.249) (0.279)

Whole-life SPDA (issued at age 55, attend age 65) 52.8% 47.2%
(0.349) (0.390)

Note: Figures in parentheses represent K-ratios.

for women, it increases from 0.192 to 0.39. In these cases, the optimal product mix
proportion decreases because the effective duration of life insurance remains the same
and the effective duration of the annuity becomes smaller as the issue age increases.
However, the K-ratio increases because the liability ratio of annuity to life insurance
per policy increases as the issue age of SPDA increases (Table 6). Thus, compared
with that for younger groups, the K-ratio is larger for older consumers, which implies
that in our numerical example, the insurer needs to sell more life insurance policies
to hedge its longevity risk with regard to its annuity business for older customers
because the deferred period of annuity is shorter.

In our previous analyses, we assume insurance premium is paid by a single premium.
Next, we investigate the effect for policies involving a level premium. When we
compare the results of Table 7 with those in Table 3 for single-premium products,
we find that both the optimal product mix proportion and the corresponding K-ratio
are smaller for level-premium products than are those for single-premium products.
The optimal product mix proportion decreases because the ratio of effective duration

of life insurance to annuity ( Dlife
eμ

Dannuity
eμ

) is smaller with the level-premium calculation.

The K-ratio results demonstrate that in our numerical example, compared with a
single-premium policy, a level-premium policy requires fewer life insurance policy
units to achieve natural hedging. That is, longevity risk can be diversified through
various deposits of premiums, similar to the coupon effect for a coupon bond.

We further demonstrate the impact of big unexpected mortality shocks on the K-
ratio.21 In our previous numerical analyses, we assume the mortality curve shifts 10
percent for all ages, but to demonstrate the impact of unexpected mortality shocks
on K-ratio, we also examine the sensitivity of the mortality curve shift and assume
that it changes from 10 percent to 25 percent in Table 8. In the case of a 25 percent
mortality shift, we measure mortality risks by including the effect of convexity. From
Table 8, we also observe the same pattern as in Table 3: both the optimal product
mix proportion and the K-ratio increase as the coverage period of SPDA becomes
longer. That is, the insurer must sell more units of term-life than whole-life policies to

21To hedge longevity risk, insurers mainly worry about big unexpected mortality shocks and
less about small mortality deviations.



490 THE JOURNAL OF RISK AND INSURANCE

TABLE 7
Product Mix Proportion (ω∗

life) and K-Ratio: Men, Level Premium

(2) (4)
(1) Difference Between Difference Between

20-Year Single and (3) Single and
Term Life Level Premium Whole Life Level Premium

20-year term SPDA 30.1% 0.0% 49.3% −0.2%
(0.357) (−0.007) (0.178) (−0.002)

30-year term SPDA 34.5% 0.0% 54.4% −0.2%
(0.472) (−0.009) (0.236) (−0.002)

Whole-life SPDA 35.5% 0.0% 55.4% −0.2%
(0.496) (−0.008) (0.247) (−0.002)

Note: Figures in parentheses represent the K-ratios. All numbers are rounded to the third digit
after zero. The differences of product mix the K-ratios between Tables 7 and 3 appear in the
second and fourth columns.

TABLE 8
Product Mix Proportion (ω∗

life) and K-Ratio: 25% Mortality Shift

(2) (4)
(1) Difference in Difference in

20-Year Mortality Curve (3) Mortality Curve
Term Life Shift (10% to 25%) Whole Life Shift (10% to 25%)

20-year term SPDA 30.3% 0.0% 49.4% 0.0%
(0.367) (0.000) (0.179) (0.001)

30-year term SPDA 34.9% 0.0% 54.5% 0.0%
(0.487) (0.002) (0.237) (0.001)

Whole-life SPDA 36.0% 0.2% 55.7% 0.1%
(0.513) (0.004) (0.250) (0.000)

Note: Figures in parentheses represent the K-ratios. All numbers are rounded to the third digit
after zero. The differences of product mix and the K-ratios calculated by considering the effects
of duration and convexity for mortality curve shift between 10 percent and 25 percent appear
in the second and fourth columns.

hedge its longevity risk. We compare the results of the product mix and the K-ratios
calculated by considering the effects of duration and convexity in both cases and
find that both the optimal product mix proportion and the K-ratio in the second and
forth columns change insignificantly (the values of difference are less than 0.004 for
all cases) because the mortality shift has been immunized by the proposed model to
hedge against unexpected mortality shocks.

However, in practice, mortality experiences for annuity products differ from those
for life insurance because of the underwriting effect and adverse selection. There-
fore, we next consider a case that includes a different significant mortality shift be-
tween annuity and insurance policies. That is, we imagine the mortality curve shift is
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TABLE 9
Product Mix Proportion (ω∗

life) and K-Ratio: 25 Percent Mortality Shift for Annuity and
22.5 Percent for Life Insurance

(2) (4)
(1) Difference in Difference in

20-Year Mortality (3) Mortality
Term Life Curve Shift Whole Life Curve Shift

20-year term SPDA 32.7% 2.3% 52.1% 2.6%
(0.408) (0.041) (0.199) (0.019)

30-year term SPDA 37.4% 2.5% 57.2% 2.6%
(0.542) (0.057) (0.265) (0.027)

Whole-life SPDA 38.5% 2.7% 58.3% 2.7%
(0.571) (0.062) (0.279) (0.029)

Note: Figures in parentheses represent the K-ratios. All numbers are rounded to the third digit
after zero. The differences of product mix and the K-ratios calculated by considering the effects
of duration and convexity for mortality curve shift between 10 percent and 25 percent appear
in the second and fourth columns.

25 percent for annuity and 22.5 percent for life insurance products.22 Comparing
the results of Table 8 with those of Table 9, we find that both the optimal product
mix proportion and the K-ratio in the second and fourth columns now have slightly
greater proportion changes because the shift in each policy type of mortality experi-
ence differs. The optimal product mix proportion increases and is slightly higher for
the annuity products with longer duration because the mortality curve shift for life
insurance is greater than that of the annuity. However, the impact of this shock on
insurers is still relatively small because our proposed model can help hedge against
unexpected mortality shocks.

IMPACT OF MODEL RISK ON NATURAL HEDGING STRATEGY

To achieve the optimal natural hedging strategy, insurers must use an appropriate
model to estimate longevity risk. However, the existing literature proposes various
models to calculate the mortality rate, with different stochastic mortality paths for
each model. Alternatives to the mortality model appear in Cairns et al. (2007), who
offer a comparative analysis of eight stochastic models based on English, Welsh, and
U.S. mortality data. Melnikov and Romaniuk (2006) and Koissi and Hognas (2006)
suggest that model risk and parameter risk are crucial when dealing with longevity
risk. To explore this issue further, we discuss the impact of model risk on a natural
hedging strategy by comparing the results derived from the one-factor LC model
with those from the two-factor CBD model. Although the CBD model is similar to the
LC model, it adopts a cohort effect in mortality modeling that is not discussed in LC
model. As we noted previously, the cohort effect is an important factor in stochastic
mortality modeling. We summarize the details of the CBD model and parameter
estimates in the Appendix.

22Due to data limitations; otherwise, we could make the assumption more realistic.
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FIGURE 6
Simulated Survival Probability for Age 25 With CBD and LC Models
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For comparison, we use the same U.S. population mortality experience to generate
the parameter estimates in the CBD model. We present the future survival probability
for both the LD and CBD models in Figure 6. The mortality improvement forecasted
by the CBD model is more significant than that using the LC model for both men and
women because the cohort effect of the CBD model captures the greater mortality
rate dynamics for older compared with younger consumers.

On the basis of these two models, we present the optimal product mix ratios in
Table 10; specifically, the insurer may need to sell a different amount of life in-
surance to hedge longevity risk. In most cases,23 the optimal product mix propor-
tion becomes smaller and the corresponding K-ratio higher in the CBD model. For
example, in a product mix featuring whole-life insurance and whole-life SPDA, the
LC model indicates a K-ratio of 0.249, whereas the CBD model reveals a ratio of 0.298.
In other words, according to the CBD model, the insurer needs to sell more whole-
life insurance policies to hedge against its risk of long-term annuity. This pattern
is even more significant in a product mix featuring 20-year term-life insurance and
whole-life SPDA. For example, the LC model indicates a K-ratio of 0.504, whereas
the CBD model reveals a ratio of 1.307. The mortality improvement forecasted by the
CBD model is more significant than that using the LC model because the cohort effect
of the CBD model captures the greater mortality rate dynamics for older compared
with younger consumers.

Insurers therefore should first work to understand the characteristic of the various
models and choose the appropriate one, depending on their objectives and the time
period allowed for hedging strategies. Asset-liability managers cannot ignore the

23For the product mix with a whole-life insurance and a 20-year term SPDA products, the
K-ratios are 0.180 (LC) and 0.159 (CBD). The result implies that to hedge against the longevity
risk for a shorter-term annuity, the effect of mortality improvement based on the CBD model
is less significant than that based on the LC model. That is, according to the calculation of the
CBD model, the insurance company can sell less whole-life insurance and still hedge against
its longevity.
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TABLE 10
Product Mix Proportion (ω∗

life) and K-Ratio: Two Models Comparison

20-Year Term Life Whole LifeCoverage/Payout
Benefit Period LC CBD LC CBD

20-year term SPDA 30.1% 24.9% 49.5% 38.4%
(0.364) (0.552) (0.180) (0.159)

30-year term SPDA 34.6% 32.5% 54.6% 47.6%
(0.481) (0.893) (0.238) (0.257)

Whole-life SPDA 35.5% 33.6% 55.6% 51.0%
(0.504) (1.307) (0.249) (0.298)

Note: Figures in parentheses represent the K-ratios.

possible impacts of model risks, regardless of when they undertake short- or long-
term natural hedging strategies associated with longevity risk.

CONCLUSION AND DISCUSSION

This research extends existing literature of hedging longevity risk by proposing an
immunization model that incorporates stochastic mortality dynamics to calculate an
optimal product mix for natural hedging. Our numerical analyses thus provide new
insights into insurance literature. First, to our knowledge, we are the first to address
product mix strategies for natural hedging. Second, to capture the stochastic mortality
pattern, we estimate the parameters in both the LC and CBD models by fitting real
historical U.S. mortality experience data with the HMD to analyze the natural hedging
strategy. Third, in recognition of the problems of model risk raised by many recent
studies, we compare the results of the LC and CBD models and thus integrate model
risk into our discussion.

The numerical analyses strongly support the use of our proposed model as a tool to
obtain the optimal balance that will effectively reduce longevity risks for life insurance
companies. The proposed natural hedging strategy immunizes longevity risk, once
the total liability ratio is set according to the optimal hedging proportion, no matter
how the mortality curve shifts. Of course, the dynamics of the mortality pattern must
be captured precisely; insurers must adjust the sales volume of life insurance and
annuity products to regain an optimal liability proportion. Our numerical analyses
also show that the K-ratio for women with a term-life policy is higher than that of
men. In noting the impacts of deferred, age, and coverage effects, we recognize that
the K-ratio decreases as the deferred period increases but increases as ages increase. In
addition, K-ratios are smaller for level-premium products than for single premiums.
For the purpose of hedging longevity risk, it is particularly important to consider
the effects of big unexpected mortality shifts, and we demonstrate that the impact of
longevity risk is more critical for policies of longer duration.

In addition, our numerical analyses show that in terms of hedging longevity risk
for a shorter-term annuity, the effect of mortality improvements based on the CBD
model is less significant than that based on the LC model. Thus, it is very important
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for insurers to understand the characteristic of the various models and choose an
appropriate one, according to their objectives and the time period of their hedging
strategies. Asset-liability managers also cannot ignore the possible impacts of model
risks.

Is natural hedging really cheaper than other external hedging instruments, such as
mortality derivatives and survivor bonds? Due to a lack of suitable price data for
various insurance products, we are unable to analyze the actual natural hedging cost
in real practice for insurance companies. Furthermore, mortality experiences may
differ for life insurance and annuity products, but because of our data limitations, we
cannot obtain sufficiently long life insurance and annuity mortality experiences to
generate the parameters for the proposed stochastic mortality models from the U.S.
mortality data in the HMD. However, we believe insurers can make use of their own
mortality experience to revise the parameters in the mortality models and apply our
proposed mythology to find their natural hedging strategy. Finally, some ongoing
important issues for insurance research and practice clearly deserve more investi-
gation. For example, studies of alternative mortality models could use the insurer’s
actual mortality experience with different products and immunization strategies with
certain assumptions about the future dynamics of nonparallel mortality shifts. We il-
lustrate the hedging strategy with a term structure force of mortality, but we do not
consider the effect of dynamic interest rates. Therefore, an analysis of the combined
effects of mortality and interest rates would offer more realistic results and should be
considered by further research.

APPENDIX: CBD MORTALITY MODEL

The Model
The CBD mortality model we use was proposed in Cairns, Blake, and Down (2006b).
They suggest a two-factor model for modeling initial mortality rates instead of central
mortality rate. The mortality rate for a person aged x in year t (q (t,x)) is modeled as
follows:

logit q (t, x) = β1
t k1

t + β2
t k2

t (A1)

where k1
t and k2

t reflect period-related effects.

This model can be presented in a simple parametric form by setting β1
t equal to 1 and

β2
t = x − x̄. Thus, the mortality rate can be modeled as in Equation (A2)

logit q (t, x) = k1
t + k2

t (x − x̄), (A2)

where x̄ is the mean age. For other generalizations of CBD model, see Cairns et al.
(2007).

The Parameter Estimates
To investigate the model risk, we also estimate the parameters in the CBD model
by fitting historical U.S. mortality data from 1959 to 2002 with the HMD data. The
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FIGURE A1
Parameter Estimates in CBD Model for Men (Left: k1

t , Right: k2
t )
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estimated parameters of k1
t and k2

t for men are depicted in Figure A1. k1
t shows a

downward trend, and k2
t indicates an upward trend.
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