Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/131979
DC FieldValueLanguage
dc.contributor.advisor陳洋元zh_TW
dc.contributor.advisorChen, Yang-Yuanen_US
dc.contributor.author劉威廷zh_TW
dc.contributor.authorLiou, Wei-Tingen_US
dc.creator劉威廷zh_TW
dc.creatorLiou, Wei-Tingen_US
dc.date2020en_US
dc.date.accessioned2020-09-02T06:09:17Z-
dc.date.available2020-09-02T06:09:17Z-
dc.date.issued2020-09-02T06:09:17Z-
dc.identifierG0107755011en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/131979-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description應用物理研究所zh_TW
dc.description107755011zh_TW
dc.description.tableofcontentsChapter 1 緒論 1\n1-1 研究背景與動機 1\n1-2 熱電元件概述 3\n1-3 熱電元件未來發展 7\nChapter 2 文獻回顧與理論基礎 9\n2-1 熱電的發展 9\n2-2 席貝克效應(Seebeck Effect) 10\n2-3 帕爾帖效應(Peltier Effect) 11\n2-4 湯姆森效應(Thomson Effect) 12\n2-5 熱傳導率(Thermal Conductivity) 13\n2-5-1 電子熱傳導影響 14\n2-5-2 聲子熱傳導影響 15\n2-6 電導率(Electrical Conductivity) 17\n2-7 席貝克係數(Seebeck Coefficient) 19\n2-8 熱電優值(Rigure of Merit) 22\nChapter 3熱電晶片基本構造與製程 24\n3-1薄膜型微結構熱電晶片基本架構 24\n3-2 實驗儀器介紹 26\n3-2-1封管系統 26\n3-2-2純化爐 27\n3-2-3高溫旋轉爐 28\n3-2-4高能球磨機 29\n3-2-5火花電漿燒結系統(Spark Plasma Sintering System) 30\n3-2-6精密鑽石切割機 31\n3-2-7電子束熱蒸鍍系統(E-beam Evaporator) 32\n3-2-8射頻磁控濺鍍系統(Radio Frequency Magnetron Sputter) 33\n3-2-9反應式離子蝕刻機(Reactive Ion Etching) 36\n3-2-10超音波震洗機(Elmasonic-P) 37\n3-2-11加熱攪拌器(Stirrers/Hot Plate) 38\n3-2-12光阻旋塗機(Photo Resist Spinner) 39\n3-2-13加熱板(Hot Plate) 39\n3-2-14黃光微影曝光機(Mask Aligner) 40\n3-3 量測儀器介紹 41\n3-3-1場發射掃描式電子顯微鏡 41\n3-3-2膜厚量測儀 42\n3-3-3熱電量測系統(ZEM-3) 43\n3-4 熱電半導體濺鍍靶材製作 45\n3-4-1 純化元素 45\n3-4-2 球磨並壓製靶材 47\n3-4-3 退靶與黏製靶材 48\n3-5 熱電微結構晶片製程 49\n3-5-1 清洗4〞基板 49\n3-5-2 黏貼金屬遮罩 49\n3-5-3 下電極製作 51\n3-5-4 切割成元件大小 53\n3-5-5 旋塗光阻並定義圖形 54\n3-5-6 沉積Cr、P型半導體熱電材料 58\n3-5-7 沉積N型半導體熱電材料 60\n3-5-8 舉離(lift-off) 60\n3-5-9 塗佈S1813光阻 61\n3-5-10 補鍍P薄膜材料 61\n3-5-11 補鍍N薄膜材料 61\n3-5-12 熱處理 62\n3-5-13 蒸鍍、濺鍍上電極 63\nChapter 4 實驗結果與討論 64\n4-1 薄膜沉積 64\n4-2 不同遮罩大小對薄膜沉積影響 66\n4-3 晶片lift-off 71\n4-4 蒸鍍上電極與EMF、Seebeck測試(室溫環境) 76\n4-5 SEM與OM量測 110\nChapter 5 結論 115\n參考文獻 117zh_TW
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0107755011en_US
dc.subject能源zh_TW
dc.subject熱電材料zh_TW
dc.subjectEnergyen_US
dc.subjectThermoelectric Materialen_US
dc.title鉍-銻-碲熱電薄膜製備及其熱電轉換應用研究zh_TW
dc.titleFabrication of Bi-Sb-Te Thermoelectric Thin Film and Its Thermoelectric Applicationen_US
dc.typethesisen_US
dc.relation.reference[1] Z. Wang et al, "Realization of a wearable miniaturized thermoelectric generator for human body applications," Sensors and Actuators A, vol. 156, pp. 95–102, November 2009.\n[2] S.B. Schaevitz et al, "A Combustion-Based MEMS Thermoelectric Power\nGenerator," Transducers ’01 Eurosensors XV , Heidelberg, 2001.\n[3] 國立嘉義大學 ,“電子束蒸鍍系統”國立嘉義大學貴重儀器中心 , 2008. [線上].\n[4] P.H. Holloway, "Gold/chromium metallizations for electronic devices," Gold Bulletin, vol. 12, no. 3, pp. 99–106, September 1979.\n[5] T.O. Akinyemi and O.E. Simolowo, "A Mobile Tropical Cooling System Design Using a Thermoelectric Module," TRANSACTIONS ON MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE, vol. 5, no. 3, pp. 1-12, June 2017.\n[6] 黃振東、徐振庭 ,“熱電材料”科學發展 , 編號 486, pp. 48-53, June 2013.\n[7] 李世光 ,“經濟部施政重點”2016.\n[8] 凌力爾特公司 ,“採用超低電壓轉換器改善從熱電能源的能量收集”. 2013.\n[9] Y.H. Choi et al, “An electrodynamic preconcentrator integrated thermoelectric\nbiosensor chip for continuous monitoring of biochemical process,” J. Micromech. Microeng., pp. 1-13, March 2012.\n[10] K. Technologies, 智慧型手錶功耗分析全記錄 , Keysight Technologies, 2015.\n[11] D. Champier et al, "Study of a TE (thermoelectric) generator incorporated in a\nmultifunction wood stove," Energy, vol. 36, pp. 1518-1526, January 2011.\n[12] L.E. Bell, "Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems," Sciece, vol. 321, pp. 1457-1461, September 2008.\n[13] 朱旭山 ,“熱電材料與元件之原理與應用”電子與材料雜誌 , 編號 22, pp. 78-89, 2004.\n[14] M. Enrique, “Thermoelectric Materials: Advances and Applications,” Research\nGate, May 2015.\n[15] J.C. Hsiao et al, "Anisotropic thermal conductivity of sputtered Bi0.5Sb1.5Te3\nfilms after current-assisted thermal treatment," Thin Solid Films, no. 645, pp. 93-\n96, January 2018.\n[16] A.R.M. Siddique et al, "A review of the state of the science on wearable\nthermoelectric power generators(TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, no. 73, pp. 730-744, February 2017.\n[17] R. Bjørk et al, "Analysis of the internal heat losses in a thermoelectric generator,"\nInternational Journal of Thermal Sciences, no. 85, pp. 12-20, July 2014.\n[18] S.B. Schaevitz, “A MEMS Thermoelectric Generator,” Thesis, September 2000.\n[19] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature Materials, vol. 7, pp. 105-114, February 2008.\n[20] S. Liu et al, "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, vol. 225, pp. 600-610, May 2018.\n[21] G. J. Snyder et al, "Thermoelectric microdevice fabricated by a MEMS-like\nelectrochemical process," Nature Materials, vol. 2, pp. 528-531, August 2003.\n[22] 蔡信行、孫光中 , 奈米科技導論-基本原理及應用 , 台北: 新文京開發出版股份有限公司 , 2004.\n[23] A. F. Conde et al, "Study of the electronic transport in the semiconducting\nBi0.5Sb1.5Te3 and Bi1.5Sb0.5Te3 alloys," Journal of Materials Science: Materials in Electronics, vol. 29, no. 18, pp. 15658-15663, September 2018.\n[24] X. Yan et al, "Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3," Nano Lett., vol. 10, pp. 3373-3378, July 2010.\n[25] I. Chowdhury et al, "On-chip cooling by superlattice-based thin-film\nthermoelectrics," Nature NanoTechnology, vol. 4, pp. 235-238, April 2009.\n[26] J.P. Carmo et al, "Thermoelectric Microconverter for Energy Harvesting Systems," IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 861-867, April 2010.\n[27] W. Zhang et al, "A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-Up Approach," Journal of MicroelectroMechanical Systems, vol. 25, no. 4, pp. 744-749, August 2016.\n[28] L.M. Goncalves et al, "Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications," Thin Solid Films, vol. 519, pp. 4152-4157, March 2011.\n[29] A. Soni et al, "Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi2Te2.7Se0.3 Nanoplatelet Composites," Nano Lett., vol. 12, p. 4305−4310, July 2012.\n[30] M. Mizoshiri et al, "Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method," Appl. Phys. Express, vol. 7, pp. 1-4, April 2014.\n[31] C. Schumacher et al, "Optimizations of Pulsed Plated p and n-type Bi2Te3-Based Ternary Compounds by Annealing in Different Ambient Atmospheres," Adv. Energy Mater., vol. 3, pp. 95-104, August 2012.\n[32] H.J. Lin et al, "Effect of Annealing Temperature on the Thermoelectric Properties of the Bi0.5Sb1.5Te3 Thin Films Prepared by Radio-Frequency Sputtering," Metallurgical and Materials Transactions A, vol. 44, no 5, pp. 2339-2345, January 2013.\n[33] M. Mizoshiri et al, "The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules," J. Micromech. Microeng., vol. 23, no. 11, pp. 1-9, October 2013.\n[34] Z.B. Tang et al, "A research on thermoelectric generator`s electrical performance\nunder temperature mismatch conditions for automotive waste heat recovery\nsystem," Case Studies in Thermal Engineering, vol. 5, p. 143–150, March 2015.\n[35] W.S. Liu et al, "Understanding of the contact of nanostructured thermoelectric n\ntype Bi2Te2.7Se0.3 legs for power generation applications," J. Mater. Chem. A, vol. 1, p. 13093–13100, September 2013.\n[36] R. Ditchfield et al, "Semiconductor surface diffusion: Effects of low-energy ion\nbombardment," Physical Review B, vol. 63, pp. 1253171-9, March 2001.\n[37] R. Ditchfield and E.G. Seebauer, "Direct Measurement of Ion-Influenced Surface\nDiffusion," Physical Review Letters, vol. 82, no. 6, pp. 1185-1188, February 1999.\n[38] T.C. Harman et al, "Quantum Dot Superlattice Thermoelectric Materials and\nDevices," Science, vol. 297, pp. 2229-2232, Septempber 2002.\n[39] J.P. Carmo et al, "Thermoelectric generator and solid-state battery for stand-alone microsystems," J. Micromech. Microeng, vol. 20, pp. 1-8, July 2010.\n[40] H. Böttner et al, "New Thermoelectric Components Using Microsystem Technologies," Journal of Microelectrictromechanical System, vol. 13, no. 3, pp. 414-420, June 2004.\n[41] I. Savani et al, "Harnessing thermoelectric power from transient heat sources: Waste heat recovery from silicon production," Energy Conversion and Management, vol. 138, p. 171–182, February 2017.zh_TW
dc.identifier.doi10.6814/NCCU202001470en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypethesis-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:學位論文
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.