Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/32233
DC FieldValueLanguage
dc.contributor.advisor謝淑貞zh_TW
dc.contributor.advisorShieh,Shwu-Janeen_US
dc.contributor.author洪榕壕zh_TW
dc.contributor.authorHung,Jung-Haoen_US
dc.creator洪榕壕zh_TW
dc.creatorHung,Jung-Haoen_US
dc.date2005en_US
dc.date.accessioned2009-09-14T05:28:08Z-
dc.date.available2009-09-14T05:28:08Z-
dc.date.issued2009-09-14T05:28:08Z-
dc.identifierG0093258041en_US
dc.identifier.urihttps://nccur.lib.nccu.edu.tw/handle/140.119/32233-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description經濟研究所zh_TW
dc.description93258041zh_TW
dc.description94zh_TW
dc.description.abstract  本文應用資產報酬率的多重碎形模型,該模型為一整合財務時間序列上的厚尾及波動持續性的連續時間過程。多重碎形的方法允許我們估計隨時間變動的報酬率高階動差,進而推論財務時間序列的產生機制。我們利用小波轉換的模數最大值計算多重碎形譜,透過譜分解得到資產報率分配的高階動差資訊。根據實證結果,我們得到S&P和DJIA的股價指數期貨報酬率符合動差尺度行為且資料也展現幕律的形態。根據估計出的譜形態為對數常態分配。實證結果也顯示S&P和DJIA的股價指數期貨報酬率均具有長記憶及多重碎形的特性。zh_TW
dc.description.abstract  We apply the multifractal model of asset returns (MMAR), a class of continuous-time processes that incorporate the thick tails and volatility persistence of financial time series. The multifractal approach allows for higher moments of returns that may vary with the time horizon and leads to infer about the generating mechanism of the financial time series. The multifractal spectrum is calculated by the Wavelet Transform Modulus Maxima (WTMM) provides information on the higher moments of the distribution of asset returns and the multiplicative cascade of volatilities. We obtain the evidences of multifractality in the moment-scaling behavior of S&P and DJIA stock index futures returns and the moments of the data represent a power law. According to the shape of the estimated spectrum we infer a log normal distribution.The empirical evidences show that both of them have long memory and multifractal property.en_US
dc.description.tableofcontentsI. Introduction...........................................................................................................1\r\nII. Methodology..........................................................................................................4\r\n2.1 Fractional Brownian Motion................................................................................4\r\n2.2. Fractal and Multifractal.......................................................................................7\r\n2.2.1 Hausdorff dimension.........................................................................................9\r\n2.2.2 Box dimension................................................................................................10\r\n2.2.3 Information dimension....................................................................................11\r\n2.2.4 Correlation dimension.....................................................................................12\r\n2.2.5 Scaling invariance...........................................................................................13\r\n2.2.6 Multifractal......................................................................................................15\r\n2.2.7 Multifractal Processes.....................................................................................20\r\n2.2.8 Partition Functions..........................................................................................21\r\n2.3 Local Hölder Exponents, Multifractal Spectrum and Generalized Fractal Dimension...................................................................................................................22\r\n2.3.1 Local Hölder Exponents.................................................................................22\r\n2.3.2 The Multifractal Spectrum...........................................................................24\r\n2.3.3 Generalized fractal dimensions......................................................................30\r\n2.4 Multifractal analysis based on Wavelet Transform Modulus Maxima......................................................................................................................31\r\nIII. Empirical result analysis...................................................................................37\r\n3.1 The Empirical result analysis of S&P and DJIA..............................................37\r\nIV. Conclusions.......................................................................................................49zh_TW
dc.language.isoen_US-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0093258041en_US
dc.subject分數布朗運動zh_TW
dc.subject自我相似zh_TW
dc.subject維度zh_TW
dc.subject多重碎形zh_TW
dc.subject小波轉換模數最大植zh_TW
dc.subjectFractional Brownian Motionen_US
dc.subjectMultifractalen_US
dc.subjectHausdorff dimemsionen_US
dc.subjectLocal Hölder exponenten_US
dc.subjectWavelet transform modulus maximaen_US
dc.titleMultifractal Analysis for the Stock Index Futures Returns with Wavelet Transform Modulus Maximazh_TW
dc.title股價指數期貨報酬率的多重碎形分析與小波轉換的模數最大值zh_TW
dc.typethesisen
dc.relation.referenceArneodo, A., Grasseau, G., and Holschneider, M., “Wavelet Transform of Multifractals,” Physical Review Letters, v61, # 20, November (1988), 2281-2284.zh_TW
dc.relation.referenceArneodo, A., Barry, E., J. Delour., Muzy, J. F., The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232-275 (1995).zh_TW
dc.relation.referenceArneodo, A., Bacry, E., Muzy, J. F.,“Random cascades on wavelet dyadic trees,”Journal of Mathematical Physics, v39, # 8, August (1998), 4142-4164.zh_TW
dc.relation.referenceAudit, B., Barry, E., Muzy, J. F., Arneodo, A., (2002), Wavelet based estimator of scaling behavior, IEEE. in Information Theory 48, 11, pp 2938-2954.zh_TW
dc.relation.referenceBarry, E., J. Delour., Muzy, J. F., Modelling financial time series using multifractal random walks., Physica A, 299, 84-92 (2001).zh_TW
dc.relation.referenceBaillie, R. T., “Long Memory Processes and Fractional Integration in Econometrics,” Journal of Econometrics 73:1 (1996), 5–59.zh_TW
dc.relation.referenceBaillie, R. T., T. Bollerslev, and H. O. Mikkelsen, “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 74:1 (1996), 3–30.zh_TW
dc.relation.referenceBaillie, R. T., C. F. Chung, and M. A. Tieslau, “Analyzing Inflation by the Fractionally Integrated ARFIMA-GARCH Model,” Journal of Applied Econometrics 11:1 (1996), 23–40.zh_TW
dc.relation.referenceBillingsley, P., Probability and Measure, (New York: John Wiley and Sons, 1995).zh_TW
dc.relation.referenceBillingsley, P., Convergence of Probability Measures, (New York: John Wiley and Sons, 1999).zh_TW
dc.relation.referenceBollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 31:3 (1986), 307–327.zh_TW
dc.relation.referenceBreidt, F.J., Crato, N. and P. de Lima, 1998, The detection and estimation of longzh_TW
dc.relation.referencememory in stochastic volatility, Journal of Econometrics, 83, pp.325-348.zh_TW
dc.relation.referenceCalvet, L., A. Fisher, and B. B. Mandelbrot, “Large Deviation Theory and the Distribution of Price Changes,” Cowles Foundation discussion paper no. 1165, Yale University, available from the SSRN database at http://www.ssrn.com (1997).zh_TW
dc.relation.referenceCalvet, L., and A. Fisher, “Forecasting Multifractal Volatility,” Journal of Econometrics 105:1 (2001), 27–58.zh_TW
dc.relation.referenceCalvet, L., and A. Fisher, “Multifractality in Asset Returns: Theory and Evidence,” Review of Economics and Statistics 84 (2002), 381--406.zh_TW
dc.relation.referenceCalvet, L., and A. Fisher,“How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,” Journal of Financial Econometrics, 2 (2004), 49--83zh_TW
dc.relation.referenceCampbell, J., A. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets (Princeton: Princeton University Press, 1997).zh_TW
dc.relation.referenceEngle, R. F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom In ation,” Econometrica 50:4 (1982), 987–1007.zh_TW
dc.relation.referenceEngle, R.F. and T. Bollerslev, 1986, Modeling the persistence of conditionalzh_TW
dc.relation.referencevariance, Econometric Reviews, 5, pp.1-50.zh_TW
dc.relation.referenceFalconer, K. Fractal Geometry: Mathematical Foundations and Applications, (Newzh_TW
dc.relation.referenceYork: John Wiley and Sons, 1990)zh_TW
dc.relation.referenceFisher, A., L. Calvet, and B. B. Mandelbrot, “Multifractality of Deutsche Mark/US Dollar Exchange Rates,” Cowles Foundation discussion paper no. 1166, Yale University, available from the SSRN database at http://www.ssrn.com (1997).zh_TW
dc.relation.referenceGoldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation101(23):e215-e220[CirculationElectronicPages;http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13).zh_TW
dc.relation.referenceLo, A. W., “Long Memory in Stock Market Prices,” Econometrica 59:5 (1991), 1279–1313.zh_TW
dc.relation.referenceMandelbrot, B. B., A. Fisher, and L. Calvet, “The Multifractal Model of Asset Returns,” Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://www.ssrn.com (1997).zh_TW
dc.relation.referenceMandelbrot, B. B., and J. W. van Ness, “Fractional Brownian Motion, Fractional Noises and Application, ” SIAM Review 10:4 (1968), 422–437.zh_TW
dc.relation.referenceMandelbrot, B.B, Fractals and Scaling in Finance: Discontinuity, Concetration, Risk. Springer, New York (1997).zh_TW
dc.relation.referenceMuzy, J. F., Bacry, E. and A. Arneodo, Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data, Physical Review Letters, v. 67, # 25, December (1991), pp. 3515-3518.zh_TW
dc.relation.referenceMuzy, J.F., Bacry ,E. and A. Arneodo,Multifractal formalism for fractal signals. The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E 47, 875 (1993).zh_TW
dc.relation.referenceX. S., Huiping C., Ziqin W., Yongzhuang Yuan, Multifractal analysis of Hang Seng index inHong Kong stockmark et, Phys. A 291 (2001) 553–562.zh_TW
dc.relation.referenceX. S., Huiping C.,Yongzhuang Y., Ziqin W., Predictability of multifractal analysis of Hang Seng stockindex in Hong Kong, Phys. A 301 (2001) 473–482.zh_TW
dc.relation.referenceYu W., Dengshi H., Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index, Phys. A 355 (2005) 497-508.zh_TW
item.openairetypethesis-
item.languageiso639-1en_US-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.cerifentitytypePublications-
Appears in Collections:學位論文
Files in This Item:
File SizeFormat
index.html115 BHTML2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.