Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/32636
DC FieldValueLanguage
dc.contributor.advisor張宏慶zh_TW
dc.contributor.advisorJang, Hung-Chinen_US
dc.contributor.author楊鎮宇zh_TW
dc.contributor.authorYang, Chen-Yuen_US
dc.creator楊鎮宇zh_TW
dc.creatorYang, Chen-Yuen_US
dc.date2004en_US
dc.date.accessioned2009-09-17T05:54:17Z-
dc.date.available2009-09-17T05:54:17Z-
dc.date.issued2009-09-17T05:54:17Z-
dc.identifierG0091753010en_US
dc.identifier.urihttps://nccur.lib.nccu.edu.tw/handle/140.119/32636-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學學系zh_TW
dc.description91753010zh_TW
dc.description93zh_TW
dc.description.abstract未來行動通訊網路之傳輸層將以IP技術為主,各種IP多媒體服務的興起將產生複雜的訊務及動態且多樣化的服務品質(Quality of Service,QoS)需求;加上行動通訊網路具高度不穩定的特性,造成即時服務(real-time service)在IP傳輸層上的效能不彰,無法有效保證一定的服務品質。為有效滿足動態且多樣化的服務品質需求,不只需針對平均頻寬、延遲、抖動和封包丟失率作控制,更需即時的服務品質回饋機制以動態與精確的控制服務品質。本論文提出一回饋型服務品質控制架構與方法,將需要服務品質保證之即時服務的效能轉換為使用者滿意度並即時回饋此滿意度,以動態協商資源並調整到所需之服務品質。如此不僅更能真實反應使用者滿意程度,更能有效提升網路資源的使用。我們選擇UMTS系統,乃因該系統是以IP傳輸介面為傳輸層,並亟需服務品質控制的系統。末了,我們以模擬實驗來驗證本論文之回饋型服務品質控制架構的效能。zh_TW
dc.description.abstractIP technology will be the core technology of transmission layer in the future mobile communication network. The rise of varied IP-based multimedia services will produce complicated traffic and diversified service quality (Quality of Service, QoS) demands. In addition, the wireless mobile communication network is highly error-prone, this will cause real-time services to have poor performance in IP transmission layer, and hard to guarantee services with a certain quality. To meet this, we not only need to control average bandwidth, delay, jitter and packet loss, but also a well-defined prompt feedback mechanism to dynamically and accurately control the service quality. This thesis proposes a feedback-based QoS control framework to convert QoS parameters of real-time services into user`s satisfaction and then feedback this satisfaction immediately. The feedback information is used to dynamically negotiate demanding resource to guarantee a certain service quality. This framework can not only more closely reflect user`s satisfaction, but also enhance the network resource usage more effectively. We choose UMTS as our target system is because its transmission layer is based on IP transmission interface, and it has emergent need to have better QoS control. At the end, we use Network Simulator-2 to verify the proposed framework is more effective.en_US
dc.description.tableofcontentsTABLE OF CONTENTS iii\nLIST OF FIGURES vii\nLIST OF TABLES ix\nCHAPTER 1 INTRODUCTION 1\n1.1 UMTS 1\n1.1.1 3GPP R99 2\n1.1.2 3GPP R4 2\n1.1.3 3GPP R5 3\n1.2 Quality of Service (QoS) 3\n1.3 UMTS QoS 3\n1.3.1 QoS Architecture of UMTS 4\n1.3.2 QoS Management Functions 5\n1.3.2.1 Mapping function 6\n1.3.2.2 Classification function 6\n1.3.2.3 Resource Manager 6\n1.3.2.4 Traffic conditioner 7\n1.3.3 IP-Multimedia Subsystem (IMS) 7\n1.4 Perception of User and QoS Control 7\nCHAPTER 2 RELATED WORKS 9\n2.1 Service Quality Quantification 9\n2.1.1 Subject Method 9\n2.1.1.1 Mean Opinion Score (MOS) 9\n2.1.2 Object Method 10\n2.1.2.1 Perceptual Evaluation of Speech Quality (PESQ) 10\n2.1.2.2 Peak Signal to Noise Ratio (PSNR) 11\n2.1.2.3 Generation of QoS Quantification 11\n2.2 QoS Feedback 11\nCHAPTER 3 FEEDBACK-BASED QOS CONTROL FRAMEWORK FOR UMTS 15\n3.1 Integrated Services (IntServ) 15\n3.2 Differentiated Services (DiffServ) 16\n3.2.1 Classification 20\n3.2.2 Marking 20\n3.2.3 Metering 21\n3.2.4 Forwarding 21\n3.2.5 Shaping 21\n3.2.6 Per-Hop Behavior (PHB) 22\n3.3 Connectivity-Service Service Model 23\n3.4 Mathematical Analysis 24\n3.4.1 QoS Feedback Algorithm 26\n3.4.2 QoS Tolerance 30\n3.4.3 QoS Sensitivity 32\n3.4.4 User Perception of Delay 33\n3.4.5 Queuing Model 34\n3.4.5.1 Class-Based Queuing (CBQ) 34\n3.4.5.2 Hierarchical CBQ (HCBQ) 36\n3.4.5.3 Per-Flow Queuing (PFQ) 37\n3.4.5.4 Flow Control 38\n3.4.6 Network Model 42\n3.4.7 QoS Negotiation 44\n3.4.7.1 Part 1: Sender Side Access Network 44\n3.4.7.2 Part 2: Receiver Side Access Network 45\n3.4.7.3 Part 3: Core Network 46\n3.4.7.4 QoS Negotiation Algorithm 47\n3.4.7.5 Part 4: Negotiation Broken 48\n3.5 Enhanced Service Level Agreement (SLA) 48\n3.5.1 Inter-Provider SLA 50\n3.5.2 End User SLA 51\n3.6 Feedback-Based QoS Control Framework 52\n3.6.1 QoS Agent (QA) 53\n3.6.1.1 QoS Monitor (QM) 53\n3.6.1.2 Application Instance Register (AIR) 53\n3.6.2 User Profile Management 54\n3.6.3 SLA Management 54\n3.6.4 Application Management 54\n3.6.5 Application Instance Database (AIDB) 54\n3.6.6 QoS Negotiator 55\n3.6.7 External Info Provider 55\n3.6.8 Network Monitor 55\n3.6.9 Resource Management 55\n3.6.10 Interfaces of Feedback-Based QoS Control 55\n3.6.10.1 QoS Monitor Interface 56\n3.6.10.2 QoS Feedback Interface 57\n3.6.10.3 QoS Control Interface 58\n3.6.10.4 QoS Requirement Interface 59\n3.6.10.5 Network Interface 60\n3.7 Mapping of Feedback-Based QoS control to UMTS 60\n3.7.1 Translation functions (Trans.) 61\n3.7.2 External DB 61\n3.7.3 UMTS BS manager 62\n3.7.4 RAB manager 63\n3.7.5 Gateway UMTS BS manager 63\n3.7.6 Other Lower Layers Manager 63\n3.7.7 Mapping to IP-Multimedia Subsystem (IMS) 64\nCHAPTER 4 SIMULATION AND RESULTS ANALYSIS 67\n4.1 Introduction to NS-2 67\n4.2 Enhanced UMTS Radio Access Network Extensions (EURANE) 67\n4.3 Simulation Scenario 68\n4.3.1 Topology 68\n4.3.2 Error Model 69\n4.3.3 Application 70\n4.3.3.1 Video Application 71\n4.3.3.2 Traffic Model 71\n4.4 Result Analysis 72\n4.4.1 Throughput 72\n4.4.2 Stability 72\n4.4.2.1 Coefficient of Variation (CV) 73\n4.4.2.2 CV to Frame Number 73\n4.4.3 Robustness 74\n4.4.4 Simulation and analysis 74\n4.4.4.1 Simulation 1: Video flow without feedback-based QoS control 74\n4.4.4.2 Simulation 2: Video flows with feedback-based QoS control 76\n4.4.4.3 Simulation 3: Different QoS Sensitivity 79\n4.4.4.4 Simulation 4: Robustness analysis without QoS feedback control 80\n4.4.4.5 Simulation 5: Robustness Analysis with Feedback-Based QoS Control 84\nCHAPTER 5 CONCLUSION AND FUTURE WORK 89\n5.1 Conclusion 89\n5.2 Future Work 89\nREFERENCE 91zh_TW
dc.format.extent44759 bytes-
dc.format.extent62884 bytes-
dc.format.extent61757 bytes-
dc.format.extent125659 bytes-
dc.format.extent64659 bytes-
dc.format.extent270334 bytes-
dc.format.extent174565 bytes-
dc.format.extent14753 bytes-
dc.format.extent54230 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.language.isoen_US-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0091753010en_US
dc.subject服務品質zh_TW
dc.subject第三代行動通訊zh_TW
dc.subject回饋zh_TW
dc.subjectQoSen_US
dc.subjectUMTSen_US
dc.subjectfeedbacken_US
dc.titleFeedback-Based QoS Control Framework for UMTSzh_TW
dc.title適用於UMTS系統之以回饋為基礎的服務品質控制架構zh_TW
dc.typethesisen
dc.relation.reference【1】 Giuseppe Araniti, Pasquale De Meo and Domenico Ursino. December 2003. Adaptively Controlling the QoS of Multimedia Wireless Applications Through “User Profiling” Techniques. IEEE Journal on selected areas in communications, vol. 21, NO.10.zh_TW
dc.relation.reference【2】 Alfred Kobsa. 2001. Generic User Modeling Systems. Kluwer Academic Publishers.zh_TW
dc.relation.reference【3】 April 1 2004. End-to-end Quality of Service (QoS) concept and architecture (3GPP TS 23.207 version 5.9.0). The 3rd Generation Partnership Project (3GPP)zh_TW
dc.relation.reference【4】 Huan-Yun Wei, Ying-Dar Lin. Fourth Quarter 2003. A Survey And Measurement-Based Comparison Of Bandwidth Management Techniques. IEEE Communications Surveys & Tutorials, vol. 5, no. 2zh_TW
dc.relation.reference【5】 Adrian E. Conway. March 2004. Output-Based Method of Applying PESQ to Measure the Perceptual Quality of Framed Speech Signals. IEEE Wireless Communications and Networking Conference, vol. 5, no. 1.zh_TW
dc.relation.reference【6】 January 2005. The Third Generation Partnership Project (3GPP) TS 23107.620.zh_TW
dc.relation.reference【7】 M. Mouly, and M.B. Pautet. 1992. The GSM System for Mobile Communications. Telecom Publishing.zh_TW
dc.relation.reference【8】 Sally Floyd, Van Jacobson. Link-sharing and Resource Management Models for Packet Networks. August 1995. IEEE/ACM Transactions on Networking Vol. 3. No.4.zh_TW
dc.relation.reference【9】 Zizhi Qiao, Lingfen Sun, Nicolai Heilemann and Emmanuel Ifeachor. A new method for VoIP Quality of Service control use combined adaptive sender rate and priority marking. June 2004. ICC2004-IEEE International Conference on Communications Vol. 27, no. 1.zh_TW
dc.relation.reference【10】 Fei Yu, Vincent W. S. Wong, Victor C. M. Leung. A new QoS Provisioning Method for Adaptive Multimedia in Cellular Wireless Networks. March 2004. IEEE INFOCOM 2004 – The Conference on Computer Communications, vol. 23, no. 1.zh_TW
dc.relation.reference【11】 Algimantas Kajackas, Vaidas Batkauskas, Arturas Medeisis. Individual QoS Rating for Voice Services in Cellular Networks. Jun 2004. IEEE Communications Magazine, vol. 42, no. 6.zh_TW
dc.relation.reference【12】 Yoshihiro Ito, Shuji Tasaka, Yoshihiko Fukuta. Psychometric Analysis of The Effect of End-to-End Delay on User-level QoS in Live Audio-Video transmission. June 2004. ICC 2004 – IEEE International Conference on Communications, vol. 27, no. 1.zh_TW
dc.relation.reference【13】 B. Simmons, H. Lutfiyya. Using Application Feedback in Differentiated Services and Policies. Jun 2004. IEEE Communications Magazine, Vol. 42, no. 6.zh_TW
dc.relation.reference【14】 J. Heinanen, F. Baker, W. Weiss, J. Wroclawski. Requests for Comments (RFC) 2597 Assured Forwarding PHB Group. June 1999. The Internet Engineering Task Force (IETF)zh_TW
dc.relation.reference【15】 V. Jacobson, K. Nichols, K. Poduri. Requests for Comments (RFC) 2598 An Expedited Forwarding PHB. June 1999. The Internet Engineering Task Force (IETF)zh_TW
dc.relation.reference【16】 Vihoy Pandey, Dipak Ghosal, Biswanath Mukherjee. Exploiting User Profiles to Support Differentiated Services in Next-Generation Wireless Networks. October 2004. IEEE Network.zh_TW
dc.relation.reference【17】 Communication Quality of Service: A framework and Definitions. November 2001. ITU-T recommendation G.1000.zh_TW
dc.relation.reference【18】 S.Van den Bosch, G..Karagiannis, A.McDonald. NSLP for Quality of Service Signaling. August 2005. The Internet Engineering Task Force (IETF).zh_TW
dc.relation.reference【19】 K. Isoyama, H. Saito, Y. Nagao, M. Yoshida. A proposal of QoS Control Architecture and Resource Assignment Scheme. April 2002. Network Operations and Management Symposium IEEE.zh_TW
dc.relation.reference【20】 Milla Poikselka, Georg Mayer, Hisham Khartabil, Aki Niemi. The IMS: IP Multimedia Concepts and Services in the Mobile Domain. April 2004. John Wiley & Sons, Ltd.zh_TW
dc.relation.reference【21】 Ben Abda Moncef, Kroener Thomas, Kandil Mohammad, Salih Ahmed. MPEG-4 and H.263 Video Traces for Network Performance Evaluation. http://www.tkn.tu-berlin.de/research/trace/trace.htmlzh_TW
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
item.openairetypethesis-
item.grantfulltextopen-
item.cerifentitytypePublications-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
75301001.pdf43.71 kBAdobe PDF2View/Open
75301002.pdf61.41 kBAdobe PDF2View/Open
75301003.pdf60.31 kBAdobe PDF2View/Open
75301004.pdf122.71 kBAdobe PDF2View/Open
75301005.pdf63.14 kBAdobe PDF2View/Open
75301006.pdf264 kBAdobe PDF2View/Open
75301007.pdf170.47 kBAdobe PDF2View/Open
75301008.pdf14.41 kBAdobe PDF2View/Open
75301009.pdf52.96 kBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.