Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/76462
DC FieldValueLanguage
dc.contributor.advisor賴桂珍zh_TW
dc.contributor.author魏志安zh_TW
dc.creator魏志安zh_TW
dc.date2013en_US
dc.date.accessioned2015-07-13T03:14:31Z-
dc.date.available2015-07-13T03:14:31Z-
dc.date.issued2015-07-13T03:14:31Z-
dc.identifierG0100754002en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/76462-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description神經科學研究所zh_TW
dc.description100754002zh_TW
dc.description102zh_TW
dc.description.abstract在成年的哺乳類動物大腦中有兩個區域,可以不斷的有新的神經細胞生成,一個位於大腦側腦室旁內側(Subventricular zone of anterior lateral ventricle ;SVZ),另一個位於海馬迴(hippocampus)內的齒狀迴(Subgran-\nular zone of dentate gyrus ;SGZ) ,其中海馬迴是本論文主要探討的腦區。\n神經前驅細胞(Neural progenitor cells :NPC)因具有自我更新(self\n-renewal)、增殖(proliferative)、多能(multipotent)的能力以及遷移性(Migration),所以可利用海馬迴內生性的神經前驅細胞(NPC),促進其增殖以替代因損傷、老化或疾病而損失的神經細胞。神經前驅細胞經由細胞體外培養過程會形成神經球(Neurospheres),神經球和神經前驅細胞同樣具有自我更新以及可以分化成其他神經細胞的能力。\n本研究觀察到,對成年神經新生進行體外藥物的篩選中,化合物Chemical-X,有明顯的促進神經新生的能力。實驗中取健康成年雄性大鼠為實驗動物,分離出成年大鼠之海馬迴神經前驅細胞。用Chemical-X處理後,觀察神經球自我更新能力,以及再把新生成的神經球利用免疫螢光染色處理,瞭解神經前驅細胞經藥物處理後所新生成的細胞,是否仍維持在神經前驅細胞的狀態。進而評估藥物能否達到促進神經新生的目的。zh_TW
dc.description.tableofcontents中文摘要………………………………………………………………Ⅰ\n英文摘要………………………………………………………………..Ⅱ\n目錄……………………………………………………………………Ⅳ\n圖次……………………………………………………………………Ⅷ\n表次……………………………………………………………………ⅩV\n縮寫對照表……………………………………………………………….…ⅩⅣ\n第一章、緒論………………………………………………………… 1\n 第一節 成年神經新生(Adult neurogenesis)…………………… 1\n 一、成年神經新生(Adult neurogenesis)的區域…..………… 1\n 第二節 海馬迴(Hippocampus)構造………………………… 3\n 一、海馬迴的學習記憶功能………………………………………. 4\n 二、神經前軀細胞(Neural progenitor cells, NPC)特性………... 5\n 三、成年神經新生發育過程的細胞標記(Cell maker)……….….. 6\n 第三節 影響成年神經新生的因素………………………………… 7\n一、腦內微環境 (niche)…………………………………………. 7\n二、環境(Environmental).……………………………………..8\n 三、荷爾蒙(hormones)….………………….…………………9\n四、運動(Exercise).…..…….……………………………....11\n五、學習 (Learning)….………………………………………….11\n六、老化 (Aging)……………..………………………………….12\n七、藥物 (Drug)…………..……………………………………13\n 第四節 天然化合物…………………………..…………………………..15\n一、厚朴的介紹….…………………………...………………....15\n 二、和厚朴酚藥理作用…….……..….…………….…….…......16\n 第五節 研究目的與策略…………….……………………………………17\n第二章、實驗材料與研究方法..……………………………………………...18\n 第一節 實驗材料…………………………………………………………...18\n 一、細胞培養材料………….…………………..…………..……18\n 二、化學藥品……………………………………….……………18 \n 三、抗體..………………..………..…..……………….………...20\n 四、實驗儀器.…………………………………………………….20\n 五、 軟體…………………………………..…………….……….21\n 六、實驗藥品配製…………………...…………………………..21\n 七、實驗動物..……………………………………..…………….22\n 第二節 成年海馬迴神經前驅細胞(neural progenitor cells)分離 \n 培養………………………………………………….............… 23\n 一、海馬迴神經前驅細胞的分離………………………………...23\n 二、細胞計數…………...…………………………………………24\n 三、神經球(neurosphere)的計算……………………………….24\n 四、細胞培養皿塗層……………………………………….……24\n五、培養基的配置……….………….. ……………….………... 25\n六、酵素的製備(Enzyme cocktail)…..…….…………………...25\n 七、Percoll的製備…..……………………………….…….……26\n 八、phosphate buffer saline(PBS)的製備……….……………26\n 九、DPBS-glucose平衡鹽溶液的製備……………………..…26\n 十、Harvest medium(HM)的製備……………………………...26\n第三節 免疫螢光染色(Immunofluorescence)................….…….…….…27\n一、細胞免疫螢光染色 .…..…….……..………………………27\n 二、IdU, CldU 細胞免疫螢光染色…..….………………..……28\n 三、封片膠的製備………..……….…..……..…………….……28\n 第四節 細胞螢光強度分………………………………….….……………..28\n 一、Nestin/GFAP螢光強度分析………….……………………29\n 二、IdU/CldU螢光強度分析…….…...………………....……29\n 第五節 實驗數據分析…………………………………...…………………30\n第三章 結果…………………………………………...………………………31\n 第一節 分離培養的神經前驅細胞(NPC)組成及分期……..……….....…31\n 第二節 Microglia的分離與神經前驅細胞(NPC)純度的提高………..…36\n第三節 和厚朴酚對體外神經前驅細胞(NPC)的影響……………………39\n 第四節 Sonic hedgehog對體外神經前驅細胞(NPC)的影響………......52\n 第五節 Chemical-X對體外神經前驅細胞(NPC)的增殖分析…………..59\n 第六節Chemical-X藥物對體外神經前驅細胞(NPC)的增殖後分析.…..73\n第四章 討論……………………………………………………………..……77\n第五章 結論……..……………………………………………………………80\n參考資料 …………………………………………………………………....81zh_TW
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0100754002en_US
dc.subject海馬迴zh_TW
dc.subject成年神經新生zh_TW
dc.subject神經球zh_TW
dc.subject神經前驅細胞zh_TW
dc.subjecthippocampusen_US
dc.subjectNeural progenitor cellsen_US
dc.subjectneurospheresen_US
dc.subjectAdult neurogenesisen_US
dc.title促進成年海馬迴神經前驅細胞增殖的藥物篩選zh_TW
dc.titlePromoting proliferation of adult hippocampal neuralen_US
dc.typethesisen
dc.relation.referenceÅberg MAI, Åberg ND, Hedbäcker H, Oscarsson J, Eriksson PS (2000) Peripheral Infusion of IGF-I Selectively Induces Neurogenesis in the Adult Rat Hippocampus. The Journal of Neuroscience 20:2896-2903.\nAizawa K, Ageyama N, Terao K, Hisatsune T (2011) Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus. Neurobiology of aging 32:140-150.\nAlbeck DS, Sano K, Prewitt GE, Dalton L (2006) Mild forced treadmill exercise enhances spatial learning in the aged rat. Behavioural Brain Research 168:345-348.\nAltman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127-1128.\nAltman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. The Anatomical record 145:573-591.\nAltman J, Das GD (1965a) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of comparative neurology 124:319-335.\nAltman J, Das GD (1965b) Post-natal origin of microneurones in the rat brain. Nature 207:953-956.\nAlvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:629-634.\nAlvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683-686.\nAlvarez-Buylla A, Garcia-Verdugo JM, Mateo AS, Merchant-Larios H (1998) Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:1020-1037.\nAmrein I, Slomianka L, Lipp HP (2004) Granule cell number, cell death and cell proliferation in the dentate gyrus of wild-living rodents. The European journal of neuroscience 20:3342-3350.\nAmrein I, Isler K, Lipp HP (2011) Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. The European journal of neuroscience 34:978-987.\nAnglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson`s disease. Histology and histopathology 12:25-31.\nBalu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neuroscience and biobehavioral reviews 33:232-252.\nBannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JNP (1999) Double dissociation of function within the hippocampus: A comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behavioral Neuroscience 113:1170-1188.\nBarnes CA (1994) Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends in neurosciences 17:13-18.\nBasak O, Taylor V (2009) Stem cells of the adult mammalian brain and their niche. Cell Mol Life Sci 66:1057-1072.\nBaskerville KA, Kent C, Nicolle MM, Gallagher M, McKinney M (2006) Aging causes partial loss of basal forebrain but no loss of pontine reticular cholinergic neurons. Neuroreport 17:1819-1823.\nBen Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP (2010) Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiology of aging 31:151-161.\nBernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proceedings of the National Academy of Sciences of the United States of America 99:11464-11469.\nBonaguidi MA, Song J, Ming GL, Song H (2012) A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Current opinion in neurobiology 22:754-761.\nBrody H (1980) The nervous system and aging. Advances in pathobiology 7:200-209.\nBronson RT, Lipman RD, Harrison DE (1993) Age-related gliosis in the white matter of mice. Brain research 609:124-128.\nBrown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. European Journal of Neuroscience 17:2042-2046.\nCalloni GW, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2007) Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proceedings of the National Academy of Sciences 104:19879-19884.\nCameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of comparative neurology 435:406-417.\nChawana R, Patzke N, Kaswera C, Gilissen E, Ihunwo AO, Manger PR (2013) Adult neurogenesis in eight Megachiropteran species. Neuroscience 244:159-172.\nChen HH, Lin SC, Chan MH (2011) Protective and restorative effects of magnolol on neurotoxicity in mice with 6-hydroxydopamine-induced hemiparkinsonism. Neuro-degenerative diseases 8:364-374.\nChennaoui M, Drogou C, Gomez-Merino D (2008) Effects of physical training on IL-1beta, IL-6 and IL-1ra concentrations in various brain areas of the rat. European cytokine network 19:8-14.\nChiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult Mammalian Forebrain Ependymal and Subependymal Cells Demonstrate Proliferative Potential, but only Subependymal Cells Have Neural Stem Cell Characteristics. The Journal of Neuroscience 19:4462-4471.\nClark PJ, Bhattacharya TK, Miller DS, Rhodes JS (2011) Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience 184:16-27.\nConboy IM (2010) Protocols for adult stem cells. New York: Humana Press.\nCouillard-Despres S, Iglseder B, Aigner L (2011) Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain--a mini-review. Gerontology 57:559-564.\nDayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. The Journal of cell biology 168:415-427.\nDeisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535-552.\nDevaney KO, Johnson HA (1980) Neuron loss in the aging visual cortex of man. Journal of gerontology 35:836-841.\nDuan X, Kang E, Liu CY, Ming GL, Song H (2008) Development of neural stem cell in the adult brain. Current opinion in neurobiology 18:108-115.\nDuman RS (1998) Novel therapeutic approaches beyond the serotonin receptor. Biological psychiatry 44:324-335.\nDuman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biological psychiatry 59:1116-1127.\nEisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proceedings of the National Academy of Sciences of the United States of America 97:7579-7584.\nEriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nature medicine 4:1313-1317.\nFarmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague–dawley rats in vivo. Neuroscience 124:71-79.\nFeng W, Khan MA, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, Liu HK (2013) The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell stem cell 13:62-72.\nFowler CD, Liu Y, Ouimet C, Wang Z (2002) The effects of social environment on adult neurogenesis in the female prairie vole. Journal of neurobiology 51:115-128.\nFrank MG, Wieseler-Frank JL, Watkins LR, Maier SF (2006) Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: Immunophenotypic and functional characteristics. Journal of neuroscience methods 151:121-130.\nFujita M, Itokawa H, Sashida Y (1973) [Studies on the components of Magnolia obovata Thunb. 3. Occurrence of magnolol and honokiol in M. obovata and other allied plants]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 93:429-434.\nFukuyama Y, Nakade K, Minoshima Y, Yokoyama R, Zhai H, Mitsumoto Y (2002) Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorganic & medicinal chemistry letters 12:1163-1166.\nGage FH (2000) Mammalian neural stem cells. Science 287:1433-1438.\nGage FH, Kelly PA, Bjorklund A (1984) Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 4:2856-2865.\nGage FH, Ray J, Fisher LJ (1995) Isolation, Characterization, and use of Stem Cells from the CNS. Annual review of neuroscience 18:159-192.\nGalvan V, Jin K (2007) Neurogenesis in the aging brain. Clinical interventions in aging 2:605-610.\nGarza JC, Guo M, Zhang W, Lu XY (2008) Leptin increases adult hippocampal neurogenesis in vivo and in vitro. The Journal of biological chemistry 283:18238-18247.\nGay F, Laforgia V, Caputo I, Esposito C, Lepretti M, Capaldo A (2013) Chronic exposure to cadmium disrupts the adrenal gland activity of the newt Triturus carnifex (Amphibia, Urodela). BioMed research international 2013:424358.\nGeinisman Y, de Toledo-Morrell L, Morrell F, Persina IS, Rossi M (1992) Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus 2:437-444.\nGoh EL, Ma D, Ming GL, Song H (2003) Adult neural stem cells and repair of the adult central nervous system. Journal of hematotherapy & stem cell research 12:671-679.\nGoldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America 80:2390-2394.\nGoodrich LV, Scott MP (1998) Hedgehog and Patched in Neural Development and Disease. Neuron 21:1243-1257.\nGoss JR, Finch CE, Morgan DG (1991) Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiology of aging 12:165-170.\nGould E, Reeves AJ, Graziano MS, Gross CG (1999a) Neurogenesis in the neocortex of adult primates. Science 286:548-552.\nGould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proceedings of the National Academy of Sciences 98:10910-10917.\nGould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E (1997) Neurogenesis in the Dentate Gyrus of the Adult Tree Shrew Is Regulated by Psychosocial Stress and NMDA Receptor Activation. The Journal of Neuroscience 17:2492-2498.\nGould E, Tanapat P, McEwen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proceedings of the National Academy of Sciences 95:3168-3171.\nGould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999b) Learning enhances adult neurogenesis in the hippocampal formation. Nature neuroscience 2:260-265.\nHaddjeri N, Blier P, de Montigny C (1998) Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:10150-10156.\nHock BJ, Bunsey MD (1998) Differential Effects of Dorsal and Ventral Hippocampal Lesions. The Journal of Neuroscience 18:7027-7032.\nHu Z, Yuri K, Ozawa H, Lu H, Kawata M (1997) The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 17:3981-3989.\nImayoshi I, Sakamoto M, Ohtsuka T, Kageyama R (2009) Continuous neurogenesis in the adult brain. Development, growth & differentiation 51:379-386.\nJacobs B, Fornal C (1999) Chronic fluoxetine treatment increases hippocampal neurogenesis in rats: a novel theory of depression. In: Soc Neurosci Abstr, p 714.\nJacobs B, Tanapat P, Reeves A, Gould E (1998) Serotonin stimulates the production of new hippocampal granule neurons via the 5-HT1A receptor in the adult rat. In: Soc Neurosci Abstr, p 1992.\nJankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Annals of the New York Academy of Sciences 1148:64-73.\nJarrard LE (1995) What does the hippocampus really do? Behavioural Brain Research 71:1-10.\nJessberger S, Gage FH (2008) Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychology and aging 23:684-691.zh_TW
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypethesis-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:學位論文
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.