Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/78090
DC FieldValueLanguage
dc.contributor.advisor詹銘煥zh_TW
dc.contributor.author林芊瑜zh_TW
dc.creator林芊瑜zh_TW
dc.date2015en_US
dc.date.accessioned2015-09-01T08:18:16Z-
dc.date.available2015-09-01T08:18:16Z-
dc.date.issued2015-09-01T08:18:16Z-
dc.identifierG0102754005en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/78090-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description神經科學研究所zh_TW
dc.description102754005zh_TW
dc.description.abstract人類隨著年齡增長後中樞神經系統的修補及再生能力逐漸下降,一旦神經系統受到傷害,是很嚴重的問題。因此,引導或促進神經細胞生長甚至再生的方法,中樞神經受損患者將獲得更有效的治療。先前已有文獻指出由植物厚朴萃取的天然化合物─和厚朴酚,具有抗氧化、抗腫瘤、抗發炎、神經保護與滋養的作用。在不同疾病模式的囓齒動物實驗,如帕金森氏症、阿茲海默症、癌症與腦缺血疾病等,和厚朴酚皆具有預防疾病或減緩症狀的效果。本篇研究使用和厚朴酚之衍生物─新合成雙酚化合物(MH102、MH103、MH104、MH106、MH107與MH111),並探討對於神經細胞的保護與滋養作用。透過腎上腺髓質嗜鉻細胞瘤 PC12 細胞預先處理新合成雙酚化合物,並以過氧化氫(H2O2)使細胞產生氧化壓力,使用活性氧檢測試驗(DCFH-DA assay)偵測細胞內活性氧(reactive oxygen species, ROS)的含量。實驗結果顯示,預先處理較高濃度(3-10μM)的新合成雙酚化合物顯著降低過氧化氫所產生的氧化壓力。另以H2O2誘導PC12細胞死亡,並使用MTT試驗法,觀測新合成雙酚化合物對於細胞存活的影響。結果顯示新合成雙酚化合物顯著減少H2O2造成的細胞死亡。於神經滋養實驗,發現新合成雙酚化合物無法直接誘導PC12細胞的神經突生長。因此,使用神經滋養因子(nerve growth factor, NGF)誘導PC12細胞神經突生長,發現新合成雙酚化合物在低濃度(0.1-0.3μM)顯著加強神經突生長。然而雙酚化合物加強NGF誘導神經突生長之機制,並非透過活化細胞外信號調節激酶 (extracellular-signal-regulated kinases, Erk1/2)與訊息傳遞轉錄活化基因-3 (signal transducer and activator of transcription 3, STAT3),Erk1/2的活化在短時間內(5至10分鐘) 反而減少,STAT3的活化則沒有差異。由此推論,新合成雙酚化合物的保護作用是透過減少ROS的產生,並可以加強NGF對於PC12細胞的神經突生長,但不是透過Erk1/2或STAT3路徑所致。zh_TW
dc.description.tableofcontents謝誌 III\n中文摘要 V\nAbstract VI\n目錄 VIII\n表次 XI\n圖次 XII\n縮寫與中英對照表 XIII\n第一章、 緒論 1\n第一節、 前言 1\n第二節、 嗜鉻性細胞瘤細胞 (PC12 cell) 1\n一、 PC12細胞簡介 1\n二、 PC12細胞之分化 1\n第三節、 神經生長因子 (Nerve growth factor, NGF) 3\n第四節、 雙酚化合物 (Biphenol compounds) 5\n一、 厚朴分化合物 5\n二、 和厚朴酚 (Honokiol) 6\n三、 和厚朴酚之衍生物 6\n第五節、 自由基簡介 (Free radical) 7\n一、 活性氧 7\n二、 抗氧化系統 7\n三、 抗氧化物質 (Antioxidant) 8\n第六節、 細胞外信號調節激酶 (Extracellular-signal-regulated kinases, Erk1/2) 9\n第七節、 訊息傳遞轉錄活化基因-3 (Signal transducer and activator of transcription 3, STAT3) 10\n第八節、 實驗目的與假說 11\n第二章、 實驗材料與方法 12\n第一節、 化學藥品與儀器 12\n一、 化學藥品 12\n二、 藥品製備 14\n三、 儀器設備 16\n第二節、 細胞培養 18\n一、 細胞株培養 18\n二、 繼代培養與計數 19\n三、 細胞冷凍保存 19\n四、 細胞解凍 19\n第三節、 藥物處理 20\n第四節、 活性氧檢測試驗 21\n第五節、 細胞存活率試驗法─MTT試驗法 22\n第六節、 神經突生長 (Neurite outgrowth assay) 23\n第七節、 西方點墨法 23\n一、 蛋白質萃取 23\n二、 蛋白質濃度測定 23\n三、 蛋白質樣品配置 24\n四、 鑄膠 24\n五、 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 24\n六、 轉漬 25\n七、 免疫轉漬 25\n第八節、 實驗數據分析 26\n第三章、 實驗結果 27\n第一節、 過氧化氫引起嗜鉻性細胞瘤細胞PC12之氧化壓力 27\n第二節、 雙酚類合成物對於H2O2處理後 ROS 含量之影響 30\n第三節、 雙酚類合成物對於H2O2處理後細胞存活率之影響 47\n第四節、 雙酚類化合物加強NGF對於PC12細胞神經突生長之影響 54\n第五節、 MH101對於NGF處理後Erk1/2磷酸化表現之影響 72\n第六節、 MH101對於NGF處理後STAT3磷酸化表現之影響 77\n第四章、 討論 80\n第五章、 結論 84\n參考文獻 85zh_TW
dc.format.extent4320511 bytes-
dc.format.mimetypeapplication/pdf-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0102754005en_US
dc.subject雙酚化合物zh_TW
dc.subject腎上腺髓質嗜鉻細胞瘤zh_TW
dc.subject神經保護zh_TW
dc.subject神經突生長zh_TW
dc.subject細胞外信號調節激酶(Erk1/2)zh_TW
dc.subject訊息傳遞轉錄活化基因-3(STAT3)zh_TW
dc.title雙酚合成物抑制氧化壓力及加強神經生長因子誘導神經突生長zh_TW
dc.titleThe novel biphenol compounds inhibit oxidative stress and enhance nerve growth factor (NGF)-induced neurite outgrowthen_US
dc.typethesisen
dc.relation.referenceAkira S, Nishio Y, Inoue M, Wang X-J, We S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63-71.\nAi J, Wang X, Nielsen M (2001) Honokiol and magnolol selectively interact with GABAA receptor subtypes in vitro. Pharmacology 63:34-41.\nAllen SJ, Dawbarn D (2006) Clinical relevance of the neurotrophins and their receptors. Clinical science (London, England : 1979) 110:175-191.\nAloe L, Bracci-Laudiero L, Bonini S, Manni L (1997) The expanding role of nerve growth factor: from neurotrophic activity to immunologic diseases. Allergy 52:883-894.\nAvraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature reviews Molecular cell biology 12:104-117.\nBai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. Journal of Biological Chemistry 278:35501-35507.\nBroderick J, Brott T, Kothari R, Miller R, Khoury J, Pancioli A, Gebel J, Mills D, Minneci L, Shukla R (1998) The Greater Cincinnati/Northern Kentucky Stroke Study Preliminary first-ever and total incidence rates of stroke among blacks. Stroke 29:415-421.\nBureau G, Longpré F, Martinoli MG (2008) Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of neuroscience research 86:403-410.\nChao LK, Liao PC, Ho CL, Wang EI, Chuang CC, Chiu HW, Hung LB, Hua KF (2010) Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. Journal of agricultural and food chemistry 58:3472-3478.\nChao MV, Rajagopal R, Lee FS (2006) Neurotrophin signalling in health and disease. Clinical science (London, England : 1979) 110:167-173.\nChen CM, Liu SH, Lin-Shiau SY (2007) Honokiol, a neuroprotectant against mouse cerebral ischaemia, mediated by preserving Na+, K+-ATPase activity and mitochondrial functions. Basic & clinical pharmacology & toxicology 101:108-116.\nChuang DY, Chan M-H, Zong Y, Sheng W, He Y, Jiang JH, Simonyi A, Gu Z, Fritsche KL, Cui J (2013) Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation 10:15.\nDikalov S, Losik T, Arbiser JL (2008) Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochemical pharmacology 76:589-596.\nDreyfus CF (1989) Effects of nerve growth factor on cholinergic brain neurons. Trends in pharmacological sciences 10:145-149.\nEbendal T (1992) Function and evolution in the NGF family and its receptors. Journal of neuroscience research 32:461-470.\nFried LE, Arbiser JL (2009) Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & redox signaling 11:1139-1148.\nFriedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Experimental cell research 253:131-142.\nFukuyama Y, Nakade K, Minoshima Y, Yokoyama R, Zhai H, Mitsumoto Y (2002) Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorganic & medicinal chemistry letters 12:1163-1166.\nGreene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America 73:2424-2428.\nGuttmacher AE, Collins FS, Nussbaum RL, Ellis CE (2003) Alzheimer`s disease and Parkinson`s disease. New England Journal of Medicine 348:1356-1364.\nHirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548-2556.\nHo KY, Tsai CC, Chen CP, Huang JS, Lin CC (2001) Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytotherapy Research 15:139-141.\nHoi CP, Ho YP, Baum L, Chow AHL (2010a) Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy Research 24:1538-1542.\nHoi CP, Ho YP, Baum L, Chow AH (2010b) Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy research : PTR 24:1538-1542.\nHou YC, Chao PD, Chen SY (2000) Honokiol and magnolol increased hippocampal acetylcholine release in freely-moving rats. The American journal of Chinese medicine 28:379-384.\nHua H, Chen W, Shen L, Sheng Q, Teng L (2013) Honokiol augments the anti-cancer effects of oxaliplatin in colon cancer cells. Acta biochimica et biophysica Sinica 45:773-779.\nHuang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annual review of biochemistry 72:609-642.\nHwang J-T, Kwon DY, Park OJ, Kim MS (2008) Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes & nutrition 2:323-326.\nIbáñez C, Cifuentes A, Simó C (2015) Recent Advances and Applications of Metabolomics to Investigate Neurodegenerative Diseases. International Review of Neurobiology.\nIto H, Sun X-L, Watanabe M, Okamoto M, Hatano T (2008) Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Bioscience, biotechnology, and biochemistry 72:885-888.\nKaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Current opinion in neurobiology 10:381-391.\nKlesse LJ, Parada LF (1999) Trks: signal transduction and intracellular pathways. Microscopy research and technique 45:210-216.\nKurata M, Suzuki M, Agar NS (1993) Antioxidant systems and erythrocyte life-span in mammals. Comparative biochemistry and physiology B, Comparative biochemistry 106:477-487.\nLee J, Jung E, Park J, Jung K, Lee S, Hong S, Park E, Kim J, Park S, Park D (2005) Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta medica 71:338-343.\nLee SY, Cho JS, Yuk DY, Moon DC, Jung JK, Yoo HS, Lee YM, Han SB, Oh K-W, Hong JT (2009a) Obovatol enhances docetaxel-induced prostate and colon cancer cell death through inactivation of nuclear transcription factor-kappaB. Journal of pharmacological sciences 111:124-136.\nLee YK, Choi IS, Kim YH, Kim KH, Nam SY, Yun YW, Lee MS, Oh KW, Hong JT (2009b) Neurite Outgrowth Effect of 4-O-methylhonokiol by Induction of Neurotrophic Factors Through ERK Activation. Neurochemical Research 34:2251-2260.\nLee YJ, Choi IS, Park MH, Lee YM, Song JK, Kim YH, Kim KH, Hwang DY, Jeong JH, Yun YP, Oh KW, Jung JK, Han SB, Hong JT (2011) 4-O-Methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free radical biology & medicine 50:66-77.\nLeonard SS, Xia C, Jiang B-H, Stinefelt B, Klandorf H, Harris GK, Shi X (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochemical and biophysical research communications 309:1017-1026.\nLevi-Montalcini R (1987) The nerve growth factor: thirty-five years later. The EMBO journal 6:1145-1154.\nLin YR, Chen HH, Ko CH, Chan MH (2006) Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European journal of pharmacology 537:64-69.\nLiou K-T, Shen Y-C, Chen C-F, Tsao C-M, Tsai S-K (2003) Honokiol protects rat brain from focal cerebral ischemia–reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain research 992:159-166.\nMartinez J, Moreno JJ (2000) Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochemical pharmacology 59:865-870.\nMatrone C, Ciotti MT, Mercanti D, Marolda R, Calissano P (2008) NGF and BDNF signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proceedings of the National Academy of Sciences 105:13139-13144.\nMatsui N, Takahashi K, Takeichi M, Kuroshita T, Noguchi K, Yamazaki K, Tagashira H, Tsutsui K, Okada H, Kido Y, Yasui Y, Fukuishi N, Fukuyama Y, Akagi M (2009) Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Research 1305:108-117.\nMcAllister AK (2001) Neurotrophins and neuronal differentiation in the central nervous system. Cellular and molecular life sciences : CMLS 58:1054-1060.\nMiller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cellular and molecular life sciences : CMLS 58:1045-1053.\nMiyata Y, Nishida E (1999) Distantly related cousins of MAP kinase: biochemical properties and possible physiological functions. Biochemical and biophysical research communications 266:291-295.\nNg YP, Cheung ZH, Ip NY (2006) STAT3 as a downstream mediator of Trk signaling and functions. Journal of Biological Chemistry 281:15636-15644.\nOgata M, Hoshi M, Shimotohno K, Urano S, Endo T (1997) Antioxidant activity of magnolol, honokiol, and related phenolic compounds. Journal of the American Oil Chemists` Society 74:557-562.\nOlanow C, Tatton W (1999) Etiology and pathogenesis of Parkinson`s disease. Annual review of neuroscience 22:123-144.\nPark Y, Han D-W, Suh H, Ryu G, Hyon S-H, Cho B, Park J-C (2003) Protective effects of green tea polyphenol against reactive oxygen species-induced oxidative stress in cultured rat calvarial osteoblast. Cell biology and toxicology 19:325-337.\nPerron JC, Bixby JL (1999) Distinct neurite outgrowth signaling pathways converge on ERK activation. Molecular and Cellular Neuroscience 13:362-378.\nQuarta S, Baeumer BE, Scherbakov N, Andratsch M, Rose-John S, Dechant G, Bandtlow CE, Kress M (2014) Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. The Journal of neuroscience : the official journal of the Society for Neuroscience 34:13222-13233.\nReichardt LF (2006) Neurotrophin-regulated signalling pathways. Philosophical transactions of the Royal Society of London Series B, Biological sciences 361:1545-1564.\nScherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends in cell biology 17:422-427.\nSchor NF (2005) The p75 neurotrophin receptor in human development and disease. Progress in neurobiology 77:201-214.\nSinet PM, Bresson JL, Couturier J, Laurent C, Prieur M, Rethore MO, Taillemite JL, Toudic D, Jerome H, Lejeune J (1977) [Possible localization of the glutathione reductase (EC 1.6.4.2) on the 8p21 band]. Annales de genetique 20:13-17.\nTse AK, Wan CK, Shen XL, Yang M, Fong WF (2005) Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 70:1443-1457.\nVaudry D, Stork P, Lazarovici P, Eiden L (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science (New York, NY) 296:1648-1649.\nWang X, Duan X, Yang G, Zhang X, Deng L, Zheng H, Deng C, Wen J, Wang N, Peng C, Zhao X, Wei Y, Chen L (2011) Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PloS one 6:e18490.\nXu HL, Tang W, Du GH, Kokudo N (2011) Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalis. Drug discoveries & therapeutics 5:202-210.\nZhai H, Inoue T, Moriyama M, Esumi T, Mitsumoto Y, Fukuyama Y (2005a) Neuroprotective effects of 2, 5-diaryl-3, 4-dimethyltetrahydrofuran neolignans. Biol Pharm Bull 28:289-293.\nZhai H, Nakade K, Oda M, Mitsumoto Y, Akagi M, Sakurai J, Fukuyama Y (2005b) Honokiol-induced neurite outgrowth promotion depends on activation of extracellular signal-regulated kinases (Erk1/2). European Journal of Pharmacology 516:112-117.\nZhou L, Too HP (2011) Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth. PloS one 6:e21680.zh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
item.openairetypethesis-
item.grantfulltextrestricted-
item.cerifentitytypePublications-
Appears in Collections:學位論文
Files in This Item:
File SizeFormat
400501.pdf4.22 MBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.