Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 混合單調法在中子運輸方程之研究
The method of mixed monotonoy on neutron transport equations作者 黃永欽 貢獻者 蔡隆義
黃永欽日期 1991
1990上傳時間 2-May-2016 17:07:34 (UTC+8) 摘要 中文摘要 參考文獻 References: [1] M. Altman, "A unified theory of nonlinear operator and evolution equations with application." Marcel Dekker, INC. ( 1986) [2]G. Busoni, V. Capasso, and A. Beller-Morante, Global solution of a nonlinear neutron transport problem with temperature feedback. Nonlinear analysis, Theory, Method & Applications. Vol. 1, No 6, pp 651-665 (1977) [3] K. M. Case and P. F. Zweifel, "Linear transport theory."Addison-Wesley. Reading, Mass, (1967) [4] G. S. Chen and A. W. Leung, Nonlinear reactor multigroup neutron transport system: Existence and stability problems.Sino-Japanese joint seminar on nonlinear partial differential equations. (1990) [5] G. A. o. Davies, (edited) "Mathematical methods in engineering." John Wiley & Sons, Ltd. (1984) [6] L. Erbe and Xinzhi Liu, Monotone iterative methods for differential systems with finite delay. Appl. Math. Comput.43, pp 43-64. (1991) [7] A. Friedman, "Partial differential equations of parabolic type." Prentice-Hall, Englewood Cliffs, New Jersey. (1964) [8] D. Gilbarg and N. S. Trundinge r , "Elliptic partial differential equations of second order." Springer Verlag.(1983) [9] H. Hochstadt, " Integal equations." John Wiley & Sons.(1976) [10] M. Khavanin, The method of mixed monotony for first order nonlinear integro- differential systems. Proceedings of The International Conference on Theory and Applications of Differential Equations. (1988) [11] M. Khavanin and V. Lakshmikantham, The method of mixed monotony and first order differential systems. Nonl. Anal.10, pp 873-877. (1986) [12] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala,"Monotone iterative techniques for nonlinear differential equations." Pitman, Boston (1985) [13] O. Ladyzhenskaya, V. Solonikov and N. Uralceva, "Linear and quasilinear equations of parabolic type." A.M.S..Translation of Monograph 23, Providence, R. I. (1968) [14] V. Lakshmikantham and A. S. Vatsala, Method of mixed monotony for nonlinear equations with a singular linear part. Appl. Math. Comput. 23, pp 235-241. (1987) [15] A. W. Leung, "Systems of nonlinear partial differential equations. Applicationa to biology and engineering." Kluwer Academic Publishers. (1989) [16] E. E. Lewis and W. F. Miller, Jr. "Computation method of neutron transport." John Wiley k Sons. New York, (1984) [17] C. V. Pao, Asymptotic behavior of the solution for the time-dependent neutron transport problem. J. Integral equations. 1, pp 131-152. (1979) [18] C. V. Pao, Stability analysis of the neutron transport equation with temperature feedback. J. Math. Phys. Vol. 24 No.5 pp 1321-1325 (1983) [19] C. V. Pao, Comparison and stability of solutions for a neutron transport problem with temperature feedback. SIAM.J. Math. Anal. pp 167-184 (1983) [20] V. P. Politukov, A method of solving boundary value problems for nonlinear transport equations U.S.S.R. Comput.Maths Math. Phys. Vol 19, pp 135-148 (1979) [21] M. H. Protter and H. F. Weinberger, "Maximum principles in differential equations." Springer Verlag. (1984) [22] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boudary value problem. Indiana Univeristy Math. J. Vol. 21, No. 11. (1972) [23] L. Y. Tsai & S. T. Wu, Existence of solutions for elliptic integra-differential systems, Math. Res. Center Reports,Symp. summer`90. (1990) [24] L. Y. Tsai, Existence of solutions for parabolic integro differential system, Sino-Japanese joint seminar on nonlinear partial differential equations. (1990) [25] V. S. Vladmimirov, "Equations of mathematical physics."(A. Jeffery, editor; A. Littlewood translator). (1970) 描述 碩士
國立政治大學
應用數學系資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005102 資料類型 thesis dc.contributor.advisor 蔡隆義 zh_TW dc.contributor.author (Authors) 黃永欽 zh_TW dc.creator (作者) 黃永欽 zh_TW dc.date (日期) 1991 en_US dc.date (日期) 1990 en_US dc.date.accessioned 2-May-2016 17:07:34 (UTC+8) - dc.date.available 2-May-2016 17:07:34 (UTC+8) - dc.date.issued (上傳時間) 2-May-2016 17:07:34 (UTC+8) - dc.identifier (Other Identifiers) B2002005102 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/89766 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用數學系 zh_TW dc.description.abstract (摘要) 中文摘要 zh_TW dc.description.tableofcontents CONTENT Section 0 Formulation 1 Section 1 Introduction 3 Section 2 The Method of Mixed Monotony and Posterior Estimates 6 § 2-1 The Method of Mixed Monotony 7 § 2-2 Posterior Estimates 16 § 2-3 : Numer i cal Results 19 Section 3 Transport Parabolic Type 32 Section 4 : Steady-State Problem 40 References 45 Appendix 1 48 Appendix 2 50 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005102 en_US dc.title (題名) 混合單調法在中子運輸方程之研究 zh_TW dc.title (題名) The method of mixed monotonoy on neutron transport equations en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) References: [1] M. Altman, "A unified theory of nonlinear operator and evolution equations with application." Marcel Dekker, INC. ( 1986) [2]G. Busoni, V. Capasso, and A. Beller-Morante, Global solution of a nonlinear neutron transport problem with temperature feedback. Nonlinear analysis, Theory, Method & Applications. Vol. 1, No 6, pp 651-665 (1977) [3] K. M. Case and P. F. Zweifel, "Linear transport theory."Addison-Wesley. Reading, Mass, (1967) [4] G. S. Chen and A. W. Leung, Nonlinear reactor multigroup neutron transport system: Existence and stability problems.Sino-Japanese joint seminar on nonlinear partial differential equations. (1990) [5] G. A. o. Davies, (edited) "Mathematical methods in engineering." John Wiley & Sons, Ltd. (1984) [6] L. Erbe and Xinzhi Liu, Monotone iterative methods for differential systems with finite delay. Appl. Math. Comput.43, pp 43-64. (1991) [7] A. Friedman, "Partial differential equations of parabolic type." Prentice-Hall, Englewood Cliffs, New Jersey. (1964) [8] D. Gilbarg and N. S. Trundinge r , "Elliptic partial differential equations of second order." Springer Verlag.(1983) [9] H. Hochstadt, " Integal equations." John Wiley & Sons.(1976) [10] M. Khavanin, The method of mixed monotony for first order nonlinear integro- differential systems. Proceedings of The International Conference on Theory and Applications of Differential Equations. (1988) [11] M. Khavanin and V. Lakshmikantham, The method of mixed monotony and first order differential systems. Nonl. Anal.10, pp 873-877. (1986) [12] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala,"Monotone iterative techniques for nonlinear differential equations." Pitman, Boston (1985) [13] O. Ladyzhenskaya, V. Solonikov and N. Uralceva, "Linear and quasilinear equations of parabolic type." A.M.S..Translation of Monograph 23, Providence, R. I. (1968) [14] V. Lakshmikantham and A. S. Vatsala, Method of mixed monotony for nonlinear equations with a singular linear part. Appl. Math. Comput. 23, pp 235-241. (1987) [15] A. W. Leung, "Systems of nonlinear partial differential equations. Applicationa to biology and engineering." Kluwer Academic Publishers. (1989) [16] E. E. Lewis and W. F. Miller, Jr. "Computation method of neutron transport." John Wiley k Sons. New York, (1984) [17] C. V. Pao, Asymptotic behavior of the solution for the time-dependent neutron transport problem. J. Integral equations. 1, pp 131-152. (1979) [18] C. V. Pao, Stability analysis of the neutron transport equation with temperature feedback. J. Math. Phys. Vol. 24 No.5 pp 1321-1325 (1983) [19] C. V. Pao, Comparison and stability of solutions for a neutron transport problem with temperature feedback. SIAM.J. Math. Anal. pp 167-184 (1983) [20] V. P. Politukov, A method of solving boundary value problems for nonlinear transport equations U.S.S.R. Comput.Maths Math. Phys. Vol 19, pp 135-148 (1979) [21] M. H. Protter and H. F. Weinberger, "Maximum principles in differential equations." Springer Verlag. (1984) [22] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boudary value problem. Indiana Univeristy Math. J. Vol. 21, No. 11. (1972) [23] L. Y. Tsai & S. T. Wu, Existence of solutions for elliptic integra-differential systems, Math. Res. Center Reports,Symp. summer`90. (1990) [24] L. Y. Tsai, Existence of solutions for parabolic integro differential system, Sino-Japanese joint seminar on nonlinear partial differential equations. (1990) [25] V. S. Vladmimirov, "Equations of mathematical physics."(A. Jeffery, editor; A. Littlewood translator). (1970) zh_TW