Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/108120
DC FieldValueLanguage
dc.contributor.advisor張宏慶zh_TW
dc.contributor.advisorJang, Hung Chinen_US
dc.contributor.author許華元zh_TW
dc.contributor.authorHsu, Hwa Yuanen_US
dc.creator許華元zh_TW
dc.creatorHsu, Hwa Yuanen_US
dc.date2017en_US
dc.date.accessioned2017-04-05T07:37:04Z-
dc.date.available2017-04-05T07:37:04Z-
dc.date.issued2017-04-05T07:37:04Z-
dc.identifierG0100753001en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/108120-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學學系zh_TW
dc.description100753001zh_TW
dc.description.abstractLTE-A在靜態頻率重用的情形下,雖能有效減少干擾,但在UE (User Equipment)較為集中情形下,會有頻譜使用不足的情況。在傳統的傳輸模式中,若UE之間欲進行傳輸,通常需由傳輸端發送訊號給基地台,基地台再發送訊號給接收者,需要進行兩次的無線傳輸。若UE在彼此距離相近的環境中,D2D (Device-to-Device)傳輸可讓UE之間直接利用LTE-A頻譜進行傳輸,進而達到節省頻譜資源的效果。\r\n 本研究探討靜態頻率重用的缺點與位置相近的D2D傳輸模式,提出DFRDD (Dynamic Frequency Reuse for D2D transmission)方法,使用動態頻率重用與D2D傳輸技術。我們將一個細胞(cell)劃分為中央區域及外圍區域,外圍區域又劃分為三個扇形區,使用動態頻率重用的方法調整頻譜,在頻譜不足時,中央區域可使用外圍區域的頻譜,外圍區域最多可使用中央區域三分之一的頻譜。在使用D2D技術時,利用D2D UE與BS/RS (Base Station/Relay Station)的距離,計算出對基地台UE干擾較少的頻譜,進而提升傳輸效率。\r\n 實驗結果顯示,DFRDD利用動態頻率重用與D2D選擇頻譜的方法、在吞吐量方面表現得較H. S.Chae [18]、Bao [19]、Zhang [20]所提出的方法為佳。zh_TW
dc.description.abstractIn the case of LTE-A static frequency reuse, although it can effectively reduce the interference, however, in the case of more dense UEs (User Equipment) environment, there will be problem of insufficient spectrum. In the traditional transmission method, if a pair of UEs want to communicate with each other, the transmitter sends a signal to the base station, the base station then sends a signal to the receiver, the signal need to to be wirelessly transmitted twice. If a pair of UEs are within a close distance, D2D (device-to-device) transmission allows users to communicate with each other directly using the same LTE-A spectrum to save spectrum resource.\r\n In order to improve LTE-A system performance, this paper proposes a DFRDD (Dynamic Frequency Reuse for D2D transmission) method. Using dynamic frequency reuse and D2D transmission, we divide a cell into center region and outer area, where the outer area is divided into three sectors. We use dynamic frequency reuse method to allocate spectrum. When the spectrum is insufficient, the center region can use the spectrum of the outer region. On the other hand, the outer area can use up to one third of the spectrum of the center region. When using D2D technic, we calculate the distance between D2D UE and the BS / RS (Base Station / Relay Station), choose the frequency that may reduce the interference of cellular UE and improve transmission efficiency.\r\n The experimental results show that DFRDD uses the method of dynamic frequency reuse and D2D to select the spectrum, which has better performance than those methods proposed by Chae [18], Bao [19] and Zhang [20].en_US
dc.description.tableofcontents第一章 緒論 1\r\n1.1 LTE-Advanced簡介 1\r\n1.1.1 載波聚合(Carrier Aggregation) 1\r\n1.1.2 中繼技術(Relay) 2\r\n1.1.3 多點協作傳輸(Co-ordinated Multi-Point Transmission, CoMP) 3\r\n1.2 D2D (Device to Device)簡介 3\r\n1.3 研究動機與目的 5\r\n1.4 論文架構 6\r\n第二章 相關研究 7\r\n2.1 D2D在FFR環境中的頻率重用 7\r\n2.1.1 FFR簡介 7\r\n2.1.2 D2D頻譜選擇 9\r\n2.2 劃分D2D使用區域減少干擾 11\r\n2.3 D2D在Cellular UE使用FPC功率控制之表現 13\r\n2.4 D2D在LTE-A環境中使用Uplink之頻譜分配 16\r\n2.5 D2D在LTE-A環境中使用Downlink與Uplink之差別 18\r\n第三章 研究方法 19\r\n3.1 研究方法 19\r\n3.2 研究步驟 21\r\n第四章 模擬實驗 32\r\n4.1 模擬流程 32\r\n4.1.2 模擬環境 34\r\n4.2 實驗結果 35\r\n4.2.1 實驗一 36\r\n4.2.2 實驗二 61\r\n第五章 結論與未來研究 94\r\n5.1 結論 94\r\n5.2 未來研究 95\r\n參考文獻 95zh_TW
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0100753001en_US
dc.subject動態頻率重用zh_TW
dc.subjectD2Dzh_TW
dc.subjectLTE-Azh_TW
dc.subject頻率重用zh_TW
dc.subjectDynamic frequency reuseen_US
dc.subjectD2Den_US
dc.subjectLTE-Aen_US
dc.subjectFrequency reuseen_US
dc.titleLTE-A D2D傳輸在動態頻率重用下之頻譜分配zh_TW
dc.titleSpectrum allocation of LTE-A D2D transmissions using dynamic frequency reuseen_US
dc.typethesisen_US
dc.relation.reference[1] Advanced testing: What to expect .Retrieved 2017.1.13, from URL: http://www.electronicproducts.com/Test_and_Measurement/Benchtop_Rack_Mountable/LTE-Advanced_testing_What_to_expect.aspx\r\n[2] 3GPP TS 36.211 v.8.4.0 Physical Channels and Modulation(Release 8).\r\n[3] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, MOTOROLA INC., “LTE-advanced:Next-generation Wireless Broadband Technology,” IEEE Wireless Communication, vol.17, no. 3, Jun. 2010.\r\n[4] F. H. Fitzek, M. Katz, and Q. Zhang, “Cellular controlled short-range communication for cooperative P2P networking,” in Proc. Wireless World Research Forum 17, pp.141–155, Nov. 2006.\r\n[5] K. Doppler, C.-H. Yu, C. B. Ribeiro, and P. Jänis, “Mode selection for device-to-device communication underlaying an LTE-Advanced network,” in Proc. IEEE WCNC’2010, pp. 1–6, Apr. 2010.\r\n[6] P. Jänis, C.-H. Yu, K. Doppler, C. B. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen, and V. Koivunen, “Device-to-device communication underlaying cellular communications systems,” Int.l J. of Communications, Network and System Sciences, vol. 2, no. 3, pp. 169–178, Jun. 2009.\r\n[7] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled deviceto-device communications in LTE-Advanced networks,” IEEE Wireless Commun., vol. 19, no. 3, pp. 96–104, Jun. 2012.\r\n[8] H. ElSawy, E. Hossain, “Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks,” IEEE Trans. Commun., vol. 62, no. 11, pp. 4147–4161, Nov. 2014.\r\n[9] 3GPP TSG RAN WG1 Meeting No. 77 R1–141901 Final Report of 3GPP TSG RAN WG1 76bis V1.0.0 (2014).\r\n[10] 3GPP TR 23.768 V0.3.0, Study on Architecture Enhancements to Support Group Communication System Enablers for LTE (GCSE–LTE) (2013).\r\n[11] 3GPP TR 23.703 V0.4.1, Study on Architecture Enhancements to Support Proximity Services (ProSe) (2013).\r\n[12] 3GPP TS 22.278 V12.3.0, Service Requirements for the Evolved Packet System (EPS) (2013).\r\n[13] 3GPP TR 22.803 V12.2.0, Feasibility Study for Proximity Services (ProSe) (2013).\r\n[14] G. Fodor , E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklós, and Z. Turányi, ”Design aspects of network assisted device-to-device communications,” IEEE Commun. Mag., pp. 170–77, Mar. 2012.\r\n[15] G. Yu, L. Xu, D. Feng, R. Yin, G. Y. Li and Y. Jiang, \"Joint mode selection and resource allocation for device-to-device communications,\" in IEEE Transactions on Communications, vol. 62, no. 11, pp. 3814–3824, Nov. 2014.\r\n[16] B. Wang, L. Chen, X. Chen, X. Zhang and D. Yang, \"Resource allocation optimization for device-to-device communication underlaying cellular networks,\" 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1-6, May. 2011.\r\n[17] L. Wei, R. Q. Hu, Y. Qian and G. Wu, \"Enable device-to-device communications underlaying cellular networks: challenges and research aspects,\" in IEEE Communications Magazine, vol. 52, no. 6, pp. 90-96, Jun. 2014.\r\n[18] H. S. Chae, J. Gu, B. G. Choi and M. Y. Chung, \"Radio resource allocation scheme for device-to-device communication in cellular networks using fractional frequency reuse,\" The 17th Asia Pacific Conference on Communications, pp. 58-62, Oct. 2011.\r\n[19] P. Bao, G. Yu and R. Yin, \"Novel frequency reusing scheme for interference mitigation in D2D uplink underlaying networks,\" 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 491-496, Sep. 2013.\r\n[20] Z. Zhang, R. Q. Hu, Y. Qian and A. Papathanassiou, \"D2D communication underlay in uplink cellular networks with fractional power control and fractional frequency reuse,\" 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–7, Dec. 2015.\r\n[21] B. Muhammad and A. Mohammed, “Performance evaluation of uplink closed loop power control for LTE System,” in Vehicular Technology Conference Fall, IEEE 70th, pp. 1–5, Sep. 2009.\r\n[22] S. T. Shah, J. Gu, S. F. Hasan, and M. Y. Chung,”SC-FDMA-based resource allocation and power control scheme for D2D communication using LTE-A uplink resource,” EURASIP Journal on Wireless Communications and Networking, vol. 2015, May. 2015.\r\n[23] B. G. Choi, J. S. Kim, M. Y. Chung, J. Shin and A. S. Park, \"Development of a system-level simulator for evaluating performance of device-to-device communication underlaying LTE-Advanced networks,\" 2012 Fourth International Conference on Computational Intelligence, Modelling and Simulation, pp. 330-335, Sep. 2012.\r\n[24] M. Hasan and E. Hossain, \"Resource allocation for network-integrated device-to-device communications using smart relays,\" 2013 IEEE Globecom Workshops (GC Wkshps), pp. 591-596, Dec. 2013.\r\n[25] P. Li, M. Rong, Y. Xue, D. Yu, L. Wang and H. Shi, “Spectrum partitioning and relay positioning for cellular system enhanced with two-hop fixed relay nodes,” IEICE Trans. Comm., vol. E90-B, no.11, pp. 3181-3188, Nov. 2007.\r\n[26] ITU-R report M.2135, “Guidelines for evaluation of radio interface technologies for IMT-Advanced,” 2008.\r\n[27] CQI. Retrieved 2016.9.22, from URL: http://www.sharetechnote.com/html/Handbook_LTE_CQI.html\r\n[28] 3GPP TS 36.106 v.8.3.0 Evolved Universal Terrestrial Radio Access (E-UTRA); FDD repeater radio transmission and reception.zh_TW
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypethesis-
item.grantfulltextopen-
item.cerifentitytypePublications-
Appears in Collections:學位論文
Files in This Item:
File SizeFormat
index.html115 BHTML2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.