Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/128863
DC FieldValueLanguage
dc.contributor.advisor張宏慶zh_TW
dc.contributor.advisorJang, Hung-Chinen_US
dc.contributor.author許宇樵zh_TW
dc.contributor.authorHsu, Yu-Chiaoen_US
dc.creator許宇樵zh_TW
dc.creatorHsu, Yu-Chiaoen_US
dc.date2019en_US
dc.date.accessioned2020-03-02T03:14:13Z-
dc.date.available2020-03-02T03:14:13Z-
dc.date.issued2020-03-02T03:14:13Z-
dc.identifierG0104753036en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/128863-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學系zh_TW
dc.description104753036zh_TW
dc.description.abstract第五代行動通訊網路(5th generation mobile network,5G)為滿足更彈性、多元化的服務需求,從超大行動寬頻(Extreme Mobile Broadband, eMBB)、巨量機器通訊(Massive Machine Type Communication, mMTC)、超可靠/低延遲通訊(Ultra-reliable Low Latency Communication, URLLC)三大使用者場景的服務需求制定相關技術標準。\n目前各國所制定的頻譜已不足以支援未來5G的服務,故向上尋求更高的頻段,例如與LTE-A重疊之6-10GHz,甚至是屬於極高頻的20-60GHz。4G使用正交頻多工的OFDM作為傳輸波形,在5G場景下,為因應新的頻段,ITU和3GPP都規劃採用非正交設計原理的新傳輸波形,雖然目前基於硬體設備技術及成本的限制,會採用CP-OFDM和DFT-s-OFDM為基礎來改進的波形,但在未來後5G的時代,F-OFDM、FBMC、UFMC、GFDM仍都是可能的候選波形。\n此外,5G時代將會有更多新增與截然不同的使用者場景。5G的整體傳輸系統為配合前後端軟體化的構想,提出以軟體主導服務的Network Slicing技術,以期更有彈性地實現不同使用需求。本研究擬以20-30GHz的mmWave為實驗頻段,同時以波形模擬器(SystemVue)測試並比較各個候選波形對應不同5G使用者場景的效能表現。最後,我們將三大場景適用之波形記錄並儲存於軟體定義網路(Software Defined Network,SDN)的交換器結點(Switch),並結合網路功能虛擬化(Network Function Virtualization,NFV)技術,完成一個「以網路軟體化技術為基礎的類5G網路切片系統框架(Network Slicing Like System Framework based on Software Defined Networking for 5G)」。我們期望此一框架能從資料傳輸速率、延遲等方面滿足5G不同使用者場景之服務需求。zh_TW
dc.description.abstractThe fifth generation mobile network (5G) is designed to meet the needs of more flex-ible and diversified services such as extreme mobile broadband (eMBB), massive ma-chine type communication (mMTC), and ultra-reliable low latency communication (URLLC).\nThe spectrum used by the upcoming 5G services is not sufficient, therefore researches are looking to higher frequency bands, such as 6-10GHz overlapping with LTE-A, or even higher 20-60GHz which belongs to extremely high frequency.\n4G uses OFDM as the transmission waveform. For 5G scenarios, both ITU and 3GPP planed to use new transmission waveforms based on non-orthogonal technologies in response to the new frequency band. Currently, due to the limitation of infrastructure technic and its cost, the updated version of CP-OFDM and DFT-s-OFDM will be used for 5G. In the near future, the upcoming beyond 5G era, F-OFDM, FBMC, UFMC, GFDM are still some of the promising candidate waveforms.\nBesides, there will be more new and distinct user scenarios defined in 5G era. The overall 5G transmission system proposed the software-as -service network slicing technology to comply with software-based frontend and backend, in order to flexibly meet various user requirements.\nIn this study, the target spectrum of our experiment is 20-30GHz/30-40GHz of mmWave. We plan to use the waveform simulator, SystemVue, to test and compare the performance of each candidate waveform applied to different 5G user scenes.\nAt last, we record the most suitable waveforms for each of the three scenarios into the software-defined networking (SDN). We combine the result with the network func-tion virtualization (NFV) technology to establish a “Network Slicing Like System Framework based on Software Defined Networking for 5G”. We hope that this framework can meet the service needs of 5G different user scenarios in terms of data transmission rate and delay.en_US
dc.description.tableofcontents第一章 緒論 1\n1.1 研究背景 1\n1.1.1 第五代行動通訊網路(5th Generation Mobile Network,5G) 1\n1.1.2 毫米波(Millimeter Wave,mmWave) 2\n1.2 研究動機 3\n1.3 研究目標 4\n1.4 論文架構 5\n第二章 相關研究 6\n2.1 A survey of millimeter wave communications (mmWave) for 5G 6\n2.2 新傳輸波形(New Radio Waveforms) 6\n2.2.1 OFDM 6\n2.2.2 濾波型正交頻多工(Filtered-OFDM,F-OFDM) 6\n2.2.3 濾波器組多載波(Filter-Bank Multicarrier,FBMC) 7\n2.2.4 通用濾波組多載波(Universal Filtered Multicarrier,UFMC) 8\n2.2.5 廣義頻分多工(Generalized Frequency Division Multiplexing,GFDM) 8\n2.2.6 以新波形建立更彈性的無線網路 9\n2.3 網路切片(Network Slicing) 10\n2.3.1 服務基底架構(Service Based Architecture,SBA) 12\n2.3.2 Service Level Virtualization 13\n2.3.3 Network Slicing for 5G Scenario 14\n2.4 網路軟體化/虛擬化 14\n2.4.1 軟體定義化網路(Software Defined Network,SDN) 15\n2.4.2 網路功能虛擬化(Network Functions Virtualization,NFV) 15\n2.4.3 SDN for 5G 16\n2.5 相關資料結論 16\n第三章 研究方法 17\n3.1 問題分析 17\n3.1.1 增強毫米波的優點,並改善其缺點 17\n3.1.2 多種波形並行運用的可能性 17\n3.1.3 5G彈性化服務之實現 17\n3.1.4 網路資源分級 18\n3.2 研究方法 19\n3.2.1 系統架構 20\n3.2.1.1 切片資源架構 20\n3.2.1.2 切片服務架構 21\n3.2.2 系統模組 22\n3.2.2.1 新波形模組 22\n3.2.2.2 SDN封包管理模組 23\n3.2.2.3 NFV功能模組 23\n3.2.2.4 網路切片模組 24\n3.3 系統流程 25\n第四章 模擬實驗與結果分析 27\n4.1 實驗環境建置 27\n4.1.1 SystmeVue和matlab建置波形 28\n4.1.2 Ns-3網路模擬器建置mmWave環境 29\n4.1.3 SDN節點建立 30\n4.1.3.1用戶接入管理系統(UE Access Management,UAM) 31\n4.1.3.2 NFV服務管理系統(NFV Service Managenment,NFVSM) 32\n4.1.3.3 服務導向架構實體集(SBA Entity Set,SBAES) 33\n4.2 實驗設計 34\n4.2.1 實驗一:候選波形實作與比較 34\n4.2.2 實驗二:網路切片架構實作與測試 36\n4.3 實驗結果與分析 42\n4.3.1 實驗一結果 42\n4.3.2 實驗一分析 47\n4.3.3 實驗二結果 48\n4.3.4 實驗二分析 51\n第五章 結論與未來研究 52\n5.1 結論 52\n5.2 未來研究 53\n參考文獻 54zh_TW
dc.format.extent5392633 bytes-
dc.format.mimetypeapplication/pdf-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0104753036en_US
dc.subject第五代行動通訊網路zh_TW
dc.subject毫米波zh_TW
dc.subject新傳輸波形zh_TW
dc.subject網路切片zh_TW
dc.subject軟體定義網路zh_TW
dc.subject網路功能虛擬化zh_TW
dc.subject5Gen_US
dc.subjectMillimeter waveen_US
dc.subjectNew waveformsen_US
dc.subjectNetwork slicingen_US
dc.subjectSoftware-defined networkingen_US
dc.subjectNetwork function virtualizationen_US
dc.title4G及後 4G通訊系統之新波形的研究zh_TW
dc.titleA study on new waveforms for 4G and beyond communication systemsen_US
dc.typethesisen_US
dc.relation.reference[1] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and Hannu Flinck, "Network Slicing & Softwarization: A Survey on Principles & Enabling Technologies & Solutions," IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2429-2453, 21 Mar 2018.\n[2] X. An, C. Zhou, R. Trivisonno, R. Guerzoni, A. Kaloxylos, D. Soldani, A. Hecker, "On end to end network slicing for 5G communication systems," Transactions on Emergency Telecommunications Technologies, vol. 28, no. 4, April 2017.\n[3] Stefano Buzzi, Carmen D‘Andrea, Tommaso Foggi, Alessandro Ugolini, Giulio Colavolpe, "Spectral efficiency of MIMO millimeter-wave links with single-carrier modulation for 5G network," 20th International ITG Workshop on Smart Antennas (WSA2016), 2016.\n[4] Min-Cheng Chan, Chien Chen, Jun-Xian Huang, Ted Kuo, Li-Hsing Yen, Chien-Chao Tseng, “OpenNet: A Simulator for Software-Defined Wireless Local Area Network”, in Proc. 2014 IEEE Wireless Communications snd Networking Conference (WCNC), 6-9 April 2014.\n[5] Hsin-Hung Cho, Chin-Feng Lai, Timothy K. Shih, Han-Chieh Chao, "Integration of SDR and SDN for 5G," IEEE Access, vol. 2, pp. 1196-1204, 11 Sep. 2014.\n[6] Jose Costa-Requena, Aapo Poutanen, Serdar Vural, George Kamel, Chris Clark, "SDN-Based UPF for Mobile Backhaul Network Slicing," in Proc. 2018 European Conference on Networks and Communications (EuCNC), 18-21 June 2018.\n[7] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, Mahesh K. Marina, "Network Slicing in 5G: Survey and Challenges," IEEE Communications magazine, vol. 55, no. 5, pp. 94-100, 12 May 2017.\n[8] Mohammad Asif Habibi, Bin Han, Hans D. Schotten, "Network Slicing in 5G Mobile Communication: Architecture, Profit Modeling, and Challenges," in Proc 14th International Symposium on Wireless Communication Systems, September 28 - October 1 2017.\n[9] Y. Kishiyama, "NTT Docomo outlook for 5G development," New Breeze: Quarterly of the ITU association of Japan, vol. 29, no. 2, pp. 10-15, April 2017.\n[10] Jose Ordonez Lucena, Pablo Ameigeiras, Diego Lopez, Juan J. Ramos-Munoz, Javier Lorca, Jesus Folgueria, "Network Slicing for 5G with SDN/NFV: Concepts, Architectures and Challenges," IEEE Communications Magazine, vol. 55, no. 5, pp. 80-87, May 2017.\n[11] Marco Mezzavilla, Sourjya Dutta, Menglei Zhang, Mustafa Riza Akdeniz, Sun-deep Rangan, "5G mmWave module for the ns-3 network simulator," in Proc. 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2-6 Nov. 2015.\n[12] Yong Niu, Yong Li, Depeng Jin, Li Su, Athanasios V. Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges," Springer Wireless Networks, vol. 21, no. 8, pp. 2657-2676, Nov. 2015.\n[13] Petar Popovski, Kasper Fløe Trillingsgaard, Osvaldo Simeone, Giuseppe Durisi, "5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communica-tion-Theoretic View," IEEE Access, vol. 6, pp. 55765-55779, 28 Sep. 2018.\n[14] Bo-Jun Qiu, Yu-Sen Hsueh, Jyh-Cheng Chen, Jia-Ru Li, You-Min Lin, Ping-Fan Ho, Tze-Jie Tan, "Service Level Virtualization (SLV): A Preliminary Implementation of 3GPP Ser-vice Based Architecture (SBA)," in Proc. MobiCom`18 Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, Oct. 2018.\n[15] T. Rappaport, S. Sun, R. Mayzus et al., "Millimeter wave mobile communications for 5G cellular: it will work!," IEEE Access, vol. 1, pp. 335-349, May 2013.\n[16] Mat ́ıas Richart, Javier Baliosian, Joan Serrat, Juan-Luis Gorricho, "Resource Slicing in Virtual Wireless Networks: A Survey," IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 462-476, Sep. 2016.\n[17] D. Szabo, F. N ´ emeth, B. Sonkoly, A. Guly ´ as, F. H. Fitzek, "owards the 5g Revolution: A Software Defined Network Architecture Exploit-ing Network ´ Coding as a Service," in Proc. 2015 ACM Conference on Special Interest Group on Data Communication, ser. SIGCOMM ’15, 17-21 Aug. 2015.\n[18] Bidyalaxmi Devi Tensubam, Nongmaithem Lalleima Chanu, Sonika Singh, "Comparative analysis of FBMC and OFDM multicarrier techniques for mobile communication networks," International Journal of Computer Applications, vol. 100, no. 19, Aug. 2014.\n[19] Rostom Zakaria, Didier Le Ruyet, "Partial interference cancellation with maximum likelihood sequence detection in FBMC spatial multiplexing system," EURASIP Journal on Advances in Signal Processing, p. 47, 18 April 2016.\n[20] Haijun Zhang, Na Liu, Xiaoli Chu, Keping Long, Abdol-Hamid Aghvami, Victor C. M. Leung, "Network Slicing Based 5G and Future MobileNetworks: Mobility, Resource Management, and Challenges," IEEE Communications Magazine, vol. 55, no. 8, pp. 138-145, 09 Aug 2017.\n[21] Chan Zhou, Malte Schekkmann, Egon Schulz, Alexandros Kaloxylos, Huawei European Research Center, "Building versatile network upon new waveforms," ETSI Workshop on Future Radio Technologies-Air Interface, 27-28 January 2016.\n[22] Alex Galis, Kiran Makhijani, Delei Yu, "Autonomic Slice Networking-Requirements and Reference Model," 14 Nov. 2016. [Online]. Available: https://tools.ietf.org/pdf/draft-galis-anima-autonomic-slice-networking-01.pdf.\n[23] Alexandros Kostopoulos, George Agapiou, "Architecture views in 5G networks," OTE Group, 21 Jan. 2016. [Online]. Available: https://www.cosmote.gr/.\n[24] Keysight, "SystemVue2018," Jan. 2018. [Online]. Available: https://www.keysight.com/en/pd2913837/systemvue-2018.\n[25] NGMN, "NGMN 5G White Paper," 17 Feb. 2015. [Online]. Available: https://www.ngmn.org/.\n[26] NGMN, "NGMN 5G P1 Description of Network Slicing Concept," 13 Jan. 2016. [Online]. Available: https://www.ngmn.org/.\n[27] Nutaq, "Filter Bank Muticarrier (FBMC) - A potential concept for 5G?," 5 Jan 2017. [Online]. Available: https://www.nutaq.com/blog/filter-bank-multicarrier-fbmc-%E2%80%93-potential-concept-5g.\n[28] OpenNetworkingFundation, "Layer123 SDN & OpenFlow World Congress," 10-14 Oct 2016. [Online]. Available: https://www.opennetworking.org/.\n[29] O. TR-526, "Applying SDN Architecture to 5G Slicing," 2016.\n[30] Qualcomm, "5G waveform & multiple access techniques," 4 Nov. 2015. [Online]. Available: https://www.qualcomm.com/.\n[31] Jose Soler, Cosmin Caba, "Implementation of an SDN-based network virtualization mechanism," DTU Fotonik, Jan. 2017. [Online]. Available: https://www.fotonik.dtu.dk/.\n[32] Tanercelebi, "What are the characteristics of millimeter waves? What are the pros cons of millimeter wave transmission?," 8 Oct. 2017. [Online]. Available: https://www.millimeterwave.com.\n[33] U. K. Tiwari, "5G New Radio," NETMANIAS, 7 Sep. 2017. [Online]. Available: https://www.netmanias.com/en/post/blog/12649.\n[34] J.-M. Wu, "New Radio Access Technology for 5G," Ministry of Education, Sep. 2016. [Online]. Available: https://3gpptrend.cm.nctu.edu.tw/.\n[35] M. Zolanvari, "SDN for 5G," October 2015. [Online]. Available: https://www.cse.wustl.edu/~jain/cse570-15/ftp/sdnfor5g.pdf.\n[36] 3GPP, "3GPP TR 22.891," 3GPP, Nov. 2015. [Online]. Available: http://www.3gpp.org/ftp//Specs/archive/22_series/22.891/.\n[37] 3GPP, "3GPP TS 23.501," 3GPP, Dec. 2017. [Online]. Available: http://www.3gpp.com/ftp/spec/archive/23_series/23.501/.\n[38] 財團法人國家實驗研究院科技政策研究與資訊中心, “你知道Samsung已經開始在佈局5G Millimeter Wave了嗎?!,” 24 April 2014. [線上]. Available: http://cdnet.stpi.narl.org.tw/.\n[39] 徐達儒, 許鴻基, “SDN與NFV相關標準與發展趨勢,” 工研院資訊與通訊研究所, Aug. 2015. [線上]. Available: https://ictjournal.itri.org.tw.zh_TW
dc.identifier.doi10.6814/NCCU202000340en_US
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypethesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.grantfulltextrestricted-
Appears in Collections:學位論文
Files in This Item:
File SizeFormat
303601.pdf5.27 MBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.