Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/131637
DC FieldValueLanguage
dc.contributor.advisor蔡尚岳<br>曾正男zh_TW
dc.contributor.advisorTsai,Shang-Yueh<br>Tzeng, Jengnanen_US
dc.contributor.author姜林宗叡zh_TW
dc.contributor.authorTsung-Jui, Chiang Linen_US
dc.creator姜林宗叡zh_TW
dc.creatorTsung-Jui, Chiang Linen_US
dc.date2020en_US
dc.date.accessioned2020-09-02T04:16:37Z-
dc.date.available2020-09-02T04:16:37Z-
dc.date.issued2020-09-02T04:16:37Z-
dc.identifierG0106755001en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/131637-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description應用物理研究所zh_TW
dc.description106755001zh_TW
dc.description.abstract在過去的研究當中,我們發現財金的時間序列相關的資料,存在著非線性與非定態的現象。我們認為不同到期期間的美國債券殖利率曲線也存在著非線性與非定態。傳統上,財金領域的學者對於時間序列相關資料的研究,大多使用時間序列的分析模型進行建模,不過使用時間序列分析模型的限制是所欲分析的標的必須是定態的資料。如果原始資料為非定態,一般會使用差分使其轉換成定態的資料。不過此種處理模式會使得原始資料損失一些重要資訊,比方說資料序列中低頻率部分的資訊。經驗模態分解法被認為可以針對非線性與非定態的時間序列資列進行拆解與分析,並有良好的結果。總體經驗模態分解法更進一步修正了經驗模態分解法的一些缺點,而均勻相位經驗模態分解法解決了總體經驗模態分解法模式分割的問題。\n\n在本研究中,我們使用了總體經驗模態分解法與均勻相位經驗模態分解法拆解不同到期期間的美國債券殖利率曲線,並建立預測模型。此外,我們發現邊界條件對於總體經驗模態分解法有很嚴重的影響,因此我們建立了三種型態的模型,其中包含了有修正邊界條件的模型與未修正邊界條件的模型。在我們以總體經驗模態分解法與均勻相位經驗模態分解法拆解完原始資料後,經由本研究所設計的程序,篩選出實用的本徵模函數,再利用立方曲線配適法進行預測。經由預測誤差的比較,本研究發現使用均勻相位經驗模組拆解法篩選出的實用本徵模函數有最好的預測結果。zh_TW
dc.description.abstractThe existence of nonstationarity and nonlinearity in the financial series is common and difficult to handle. Traditionally, financial researchers apply statistical time series models. However, the series must be stationary in order to apply time series models. If a series is not stationary, it is usually detrend by taking difference although losing certain information such as the low frequency part of the data.\nWe try to model the time series of the U.S. bond yield curves with different maturities, which show the nonstationarity and nonlinearity as well. Other than the statistical models, the empirical decomposition (EMD) is recognized as the suitable mothed to analyze the nonstationarity and nonlinearity time series data among a wide range of scientific disciplines, and is promising for financial data. Nevertheless, there exists the mode-mixing problem in the EMD, hence some approaches are proposed to solve it including the ensemble empirical decomposition (EEMD). The uniform phase empirical decomposition (UPEMD) further improve the EEMD by reducing the mode-splitting and residual noise effects.\nIn the study, we implement the EEMD and the UPEMD to the U.S. bond yield curves with different maturities. The boundary effect of the original data may occur, so that we also consider some methods for boundary effect reduction during the decomposition. After the decomposition, we obtain the useful IMF and predict future values by cubic curve fitting. From our investigation, the UPEMD with boundary condition modification produces the accurate predictions.en_US
dc.description.tableofcontentsTABLE OF CONTENTS\nEnglish abstract i\nChinese abstract ii\nTable of contents iii\nList of tables v\nList of figures vi\n\n1. Introduction------------------------------------------------------------------------- 1\n1.1 Background--------------------------------------------------------------------1\n1.2 Motivation---------------------------------------------------------------------2\n2. Literature review---------------------------------------------------------------------4\n3. Methodology-------------------------------------------------------------------------6\n3.1 Basic mathematical process---------------------------------------------------6\n3.1.1 Empirical mode decomposition (EMD)---------------------------------6\n3.1.2 Ensemble empirical mode decomposition (EEMD)--------------------7\n3.1.3 Uniform phase empirical mode decomposition (UPEMD)------------9\n3.1.4 Sample entropy (SampEn)-------------------------------------------------10\n3.1.5 Augmented Dickey–Fuller test (ADF test) ------------------------------10\n3.1.6 Poincaré plot-----------------------------------------------------------------11\n3.1.7 Curve fitting-----------------------------------------------------------------12\n3.2 Statistical measures-------------------------------------------------------------12\n3.2.1 Power percentage-----------------------------------------------------------12\n3.2.2 Computed period------------------------------------------------------------13\n3.2.3 Pearson correlation---------------------------------------------------------13\n3.2.4 The measures of error------------------------------------------------------13\n4. Empirical Study-----------------------------------------------------------------------14\n4.1 Data description------------------------------------------------------------------14\n4.2 Descriptive statistics and the stationarity--------------------------------------15\n4.3 The result of the Poincaré graph-----------------------------------------------17\n4.4 Model specification-------------------------------------------------------------19\n4.5 The procedure of data analysis-------------------------------------------------20\n4.6 Results-----------------------------------------------------------------------------23\n4.6.1 The IMFs----------------------------------------------------------------------23\n4.6.2 The power percentage and the sample entropy---------------------------34\n4.6.3 The calculated period and correlation coefficient-----------------------------41\n4.6.4 The prediction---------------------------------------------------------------------45\n5. Conclusion--------------------------------------------------------------------------------50\n\nAppendix----------------------------------------------------------------------------------52\nA1. Statistical measures of Model 1----------------------------------------------------52\nA2. Statistical measures of Model 2----------------------------------------------------56\nA3. Statistical measures of Model 3----------------------------------------------------60\nReference----------------------------------------------------------------------------------64\n\n\n\n\n\n\nLIST OF TABLES\n\nTable 1 Means and standard deviations of the bond yield curves----------16\nTable 2 ADF test for the bond yield curves-----------------------------------16\nTable 3 The sample entropy for each replicate of the synthetic data------23\nTable 4 MO3 EEMD with boundary modified (mirror method)-----------42\nTable 5 Yr5 EEMD with boundary modified (mirror method)-------------42\nTable 6 Yr30 EEMD with boundary modified (mirror method)-----------42\nTable 7 MO3 (EEMD with no boundary modified)-------------------------43\nTable 8 Yr5 (EEMD with no boundary modified)---------------------------43\nTable 9 Yr30 (EEMD with no boundary modified)-------------------------43\nTable 10 MO3 (UPEMD)---------------------------------------------------------44\nTable 11 Yr5 (UPEMD)----------------------------------------------------------44\nTable 12 Yr30 (UPEMD)--------------------------------------------------------44\nTable 13 The average RMSE and MAE of all models for different maturities ---------------------------------------------------------------49\n\n\n\n\n\n\n\n\n\nLIST OF FIGURES\n\nFigure 1 Bond yield with maturities ----------------------------------------14\nFigure 2 The Poincaré plot of MO1 ----------------------------------------17\nFigure 3 The Poincaré plot of MO6 ----------------------------------------18\nFigure 4 The Poincaré plot of Yr5------------------------------------------18\nFigure 5 The Poincaré plot of Yr30-----------------------------------------19\nFigure 6 The research flow of data analysis--------------------------------20\nFigure 7 The IMFs of MO3 of Model 1 in the first segment-------------25\nFigure 8 The IMFs of Yr3 of Model 1 in the first segment---------------26\nFigure 9 The IMFs of Yr30 of Model 1 in the first segment--------------27\nFigure 10 The IMFs of MO3 of Model 2 in the first segment--------------28\nFigure 11 The IMFs of Yr3 of Model 2 in the first segment----------------29\nFigure 12 The IMFs of Yr30 of Model 2 in the first segment---------------30\nFigure 13 The IMFs of MO3 of Model 3 in the first segment---------------31\nFigure 14 The IMFs of Yr3 of Model 3 in the first segment-----------------32\nFigure 15 The IMFs of Yr30 of Model 3 in the first segment---------------33\nFigure 16 The power percentage of MO3 of Model 1------------------------35\nFigure 17 The power percentage of Yr3 of Model 1-------------------------35\nFigure 18 The power percentage of Yr30 of Model 1------------------------35\nFigure 19 The power percentage of MO3 of Model 2------------------------36\nFigure 20 The power percentage of Yr3 of Model 2--------------------------36\nFigure 21 The power percentage of Yr30 of Model 2------------------------36\nFigure 22 The power percentage of MO3 of Model 3------------------------37\nFigure 23 The power percentage of Yr3 of Model 3--------------------------37\nFigure 24 The power percentage of Yr30 of Model 3------------------------37\nFigure 25 The sample entropy of MO3 of Model 1---------------------------38\nFigure 26 The sample entropy of Yr3 of Model 1-----------------------------38\nFigure 27 The sample entropy of Yr30 of Model 1---------------------------38\nFigure 28 The sample entropy of MO3 of Model 2---------------------------39\nFigure 29 The sample entropy of Yr3 of Model 2-----------------------------39\nFigure 30 The sample entropy of Yr30 of Model 2---------------------------39\nFigure 31 The sample entropy of MO3 of Model 3---------------------------40\nFigure 32 The sample entropy of Yr3 of Model 3-----------------------------40\nFigure 33 The sample entropy of Yr30 of Model 3---------------------------40\nFigure 34 Predicted errors of all models for MO1---------------------------46\nFigure 35 Predicted errors of all models for MO3---------------------------46\nFigure 36 Predicted errors of all models for Yr1-----------------------------47\nFigure 37 Predicted errors of all models for Yr2-----------------------------47\nFigure 38 Predicted errors of all models for Yr3-----------------------------47\nFigure 39 Predicted errors of all models for Yr7-----------------------------48\nFigure 40 Predicted errors of all models for Yr10----------------------------48\nFigure 41 Predicted errors of all models for Yr20----------------------------48\nFigure 42 Predicted errors of all models for Yr30----------------------------49\nFigure 43 Mean errors of all models for different maturities---------------50zh_TW
dc.format.extent6605293 bytes-
dc.format.mimetypeapplication/pdf-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0106755001en_US
dc.subject總體經驗模態分解法zh_TW
dc.subject均勻相位經驗模態分解法zh_TW
dc.subject美國債券殖利率曲線zh_TW
dc.subject非線性現象zh_TW
dc.subject非定態現象zh_TW
dc.subjectnonlinearityen_US
dc.subjectthe ensemble empirical decomposition (EEMD)en_US
dc.subjectthe uniform phase empirical decomposition (UPEMD)en_US
dc.subjectthe U.S. bond yield curvesen_US
dc.subjectnonstationarityen_US
dc.title使用總體經驗模態分解法與均勻相位經驗模態分解法對美國債券殖利率建模zh_TW
dc.titleModeling the U.S. Yield Curves with Different Maturities by The EEMD and the UPEMDen_US
dc.typethesisen_US
dc.relation.referenceReference\n\nAbhyankar, A., Copeland, L. S., and Wong, W. (1995). Nonlinear dynamics in real-time equity market indices: Evidence from the United Kingdom. The Economic Journal, 105(431), 864-880.\n\nAbhyankar, A., Copeland, L. S., and Wong, W. (1997). Uncovering nonlinear structure in real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100. Journal of Business & Economic Statistics, 15(1), 1-14.\n\nBox, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons.\n\nCheng, C. H. and Wei, L. Y. (2014). A novel time-series model based on empirical mode decomposition for forecasting TAIEX. Economic Modelling, 36, 136-141.\n\nDiebold, F. X., Rudebusch, G. D., and Aruoba, B. S. (2006). The macroeconomy and the yield curve: A dynamic latent factor approach. Journal of Econometrics 127 (1–2), 309–338.\n\nFama, E. F. (1991). Efficient capital markets: II. The journal of finance, 46(5), 1575-1617.\n\n\n\nHuang, N. E., Shen, Z., Long, S. R., Wu, M. L., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. (1998), The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London A, 454, pp. 903–995.\n\n\nLake, D. E., Richman, J. S., Griffin, M. P., and Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797.\n\nLi, G., Yang, Z., and Yang, H. (2018). Noise reduction method of underwater acoustic signals based on uniform phase empirical mode decomposition, amplitude-aware permutation entropy, and Pearson correlation coefficient. Entropy, 20(12), 918.\n\nMönch, E. (2008). Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach. Journal of Econometrics, 146(1), 26-43.\n\nNelson, C. R. and Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 473-489.\n\n\nPincus, S. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 110-117.\n\n\n\nWang, Y. H., Hu, K., and Lo, M. T. (2018). Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches. IEEE Access, 6, 34819-34833.\n\n\n\nWang, Y. H., Yeh, C. H., Young, H. W. V., Hu, K., and Lo, M. T. (2014), On the computational complexity of the empirical mode decomposition algorithm. Physica A: Statistical Mechanics and Its Applications, 400(15), pp. 159-167.\n\n\nWu, Z. and Huang, N. E. (2009), Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, pp. 1-41.\n\nYeh, J. R., Shieh, J. S., and Huang, N. E. (2010), Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2(2), pp. 135–156.\n\nZhang, C., & Pan, H. (2015, December). A novel hybrid model based on EMD-BPNN for forecasting US and UK stock indices. In 2015 IEEE International Conference on Progress in Informatics and Computing (PIC) (pp. 113-117). IEEE.\n\nZhan, L., & Li, C. (2017). A comparative study of empirical mode decomposition-based filtering for impact signal. Entropy, 19(1), 13.zh_TW
dc.identifier.doi10.6814/NCCU202001401en_US
item.fulltextWith Fulltext-
item.grantfulltextembargo_20250817-
item.cerifentitytypePublications-
item.openairetypethesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
500101.pdf6.45 MBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.