Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/135982
DC FieldValueLanguage
dc.contributor.advisor李蔡彥zh_TW
dc.contributor.advisorLi, Tsai-Yenen_US
dc.contributor.author蔡苡雋zh_TW
dc.contributor.authorTsai, Yi-Chuanen_US
dc.creator蔡苡雋zh_TW
dc.creatorTsai, Yi-Chuanen_US
dc.date2021en_US
dc.date.accessioned2021-07-01T11:57:18Z-
dc.date.available2021-07-01T11:57:18Z-
dc.date.issued2021-07-01T11:57:18Z-
dc.identifierG0107753044en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/135982-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學系zh_TW
dc.description107753044zh_TW
dc.description.abstract路徑規劃一直是無人機自動化研究中重要的課題,其目的在於確保無人機的安全性及效率,在移動中隨時更新與即時規劃路徑,讓無人機順利到達目標點。無人機的機上運算對於複雜或廣大的區域,需要消耗很多計算時間,而對於無人機的安全性來說,需要較短的規劃時間來達到飛行安全的目的。在本論文中,我們探討了不同的路徑規劃演算法的優劣勢,並決定採用快速搜索隨機樹(RRT)作為無人機的路徑規劃演算法,且提出了一種階層式協力計算架構,此架構利用機上運算與基地台的非同步合作規劃,嘗試解決在單層路徑規劃上較難同時確保規劃即時性與路徑最優性的問題。本系統可用於無人機行駛在不確定的環境中即時規劃路徑,並確保無人機在飛行時的安全,及產出有效率的路徑。我們以四種不同環境條件下進行即時模擬飛行實驗,實驗結果顯示本架構可有效降低飛行花費時間或是飛行路徑長度,並且能在有提供風場資訊的環境中,選擇更順風的路徑飛行。zh_TW
dc.description.abstractPath planning has always been an important topic in the research of UAV automated navigation. The purpose of this work is to consider the safety and efficiency of UAVs when planning and updating the path in real-time during the movement such that the UAV can reach the goal configuration successfully. Global path planning usually requires a great amount of computing for complex or large areas, which may be beyond the onboard computing power of many UAVs. Even if the computation can be done on board, the long planning time may not guarantee the safety of UAV navigation. In this paper, we investigate the pros and cons of various path planning algorithms and choose Rapidly-exploring Random Tree (RRT) as a base planning algorithm for UAVs. We proposed a collaborative hierarchical computing architecture, which uses asynchronous cooperative planning of the computing resources onboard and at the base station. Our architecture aims to tackle the difficulty in single-layer path planning where the immediacy of planning and the optimality of the path can not be ensured at the same time. Our system can be used to plan the path for a UAV in an uncertain environment in real-time and ensure its safety during the flight and the effectiveness of the output path. We have conducted experiments in simulation for a typical UAV under four different environmental conditions. The experimental results show that our method can effectively reduce flight time or path length and choose a more downwind path if the wind field information is provided.en_US
dc.description.tableofcontents致謝 i\n摘要 ii\nAbstract iii\n目錄 iv\n圖目錄 vi\n表目錄 viii\n第1章 緒論 1\n1.1 研究背景 1\n1.2 研究動機與目標 2\n1.3 論文貢獻 3\n1.4 論文架構 4\n第2章 背景知識與相關研究 5\n2.1 運動規劃 5\n2.2 路徑規劃演算法 7\n2.3 快速搜索隨機樹 8\n2.4 路徑平滑化 13\n2.5 演算法測試實驗與結論 14\n第3章 研究方法 16\n3.1 問題定義 16\n3.2 系統架構流程 19\n3.3 系統通訊架構 21\n3.4 系統架構模組 23\n第4章 實驗與分析 28\n4.1 實驗說明 28\n4.2 系統展示 34\n4.3 實驗結果分析 39\n第5章 結論 50\n5.1 研究結論 50\n5.2 未來展望 52\n參考文獻 53\n附錄 55zh_TW
dc.format.extent4364334 bytes-
dc.format.mimetypeapplication/pdf-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0107753044en_US
dc.subject無人機zh_TW
dc.subject運動規劃zh_TW
dc.subject路徑規劃zh_TW
dc.subject快速搜索隨機樹zh_TW
dc.subjectUAVen_US
dc.subjectHierarchical Motion Planningen_US
dc.subjectPath Planningen_US
dc.subjectRapidly-exploring Random Treeen_US
dc.title不確定的環境中無人機的階層式協力運動規劃zh_TW
dc.titleA Collaborative Hierarchical Online Motion Planner for UAV in an Uncertainty Environmenten_US
dc.typethesisen_US
dc.relation.reference[1] Wikipedia. "Unmanned aerial vehicle." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Unmanned_aerial_vehicle&oldid=955084723 (accessed 7 May 2020 05:46 UTC.\n[2] Wikipedia. "Motion planning." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Motion_planning&oldid=950519176 (accessed 7 May 2020 05:25 UTC.\n[3] H. Yang, Q. Jia, and W. Zhang, "An Environmental Potential Field Based RRT Algorithm for UAV Path Planning," in 2018 37th Chinese Control Conference (CCC), 2018: IEEE, pp. 9922-9927.\n[4] L. Yang, J. Qi, J. Xiao, and X. Yong, "A literature review of UAV 3D path planning," in Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014: IEEE, pp. 2376-2381.\n[5] G. A. Thanellas, V. C. Moulianitis, and N. A. Aspragathos, "A spatially wind aware quadcopter (UAV) path planning approach," IFAC-PapersOnLine, vol. 52, no. 8, pp. 283-288, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ifacol.2019.08.084.\n[6] K. Yang, S. Keat Gan, and S. Sukkarieh, "A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV," Advanced Robotics, vol. 27, no. 6, pp. 431-443, 2013.\n[7] W. Zu, G. Fan, Y. Gao, Y. Ma, H. Zhang, and H. Zeng, "Multi-uavs cooperative path planning method based on improved rrt algorithm," in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: IEEE, pp. 1563-1567.\n[8] L. De Filippis, G. Guglieri, and F. Quagliotti, "A minimum risk approach for path planning of UAVs," Journal of Intelligent & Robotic Systems, vol. 61, no. 1-4, pp. 203-219, 2011.\n[9] A. González-Sieira, M. Mucientes, and A. Bugarín, "Motion planning under uncertainty in graduated fidelity lattices," Robotics and Autonomous Systems, vol. 109, pp. 168-182, 2018.\n[10] F. Li, S. Zlatanova, M. Koopman, X. Bai, and A. Diakité, "Universal path planning for an indoor drone," Automation in Construction, vol. 95, pp. 275-283, 2018.\n[11] Z. Beck, W. T. L. Teacy, A. Rogers, and N. R. Jennings, "Collaborative online planning for automated victim search in disaster response," Robotics and Autonomous Systems, vol. 100, pp. 251-266, 2018/02/01/ 2018, doi: https://doi.org/10.1016/j.robot.2017.09.014.\n[12] S. M. LaValle, J. J. Kuffner, and B. Donald, "Rapidly-exploring random trees: Progress and prospects," Algorithmic and computational robotics: new directions, no. 5, pp. 293-308, 2001.\n[13] S. Karaman and E. Frazzoli, "Incremental sampling-based algorithms for optimal motion planning," Robotics Science and Systems VI, vol. 104, no. 2, 2010.\n[14] J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path planning," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), 2000, vol. 2: IEEE, pp. 995-1001.\n[15] T.-Y. Li and Y.-C. Shie, "An incremental learning approach to motion planning with roadmap management," in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), 2002, vol. 4: IEEE, pp. 3411-3416.\n[16] K. Liang, Z. Chun-xia, and G. Jian-hui, "Path Planning Based on Fuzzy Rolling Rapidly-exploring Random Tree for Mobile Robot," School of Computer Science and Technology,NUST,Nanjing 210094,China, vol. 34, no. 5, pp. 642-648, 2010.\n[17] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C. Peng, "Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges," Sensors (Basel, Switzerland), vol. 18, 2018.\n[18] Wikipedia. "Robot Operating System." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=985900454 (accessed 4 November 2020 02:47 UTC.zh_TW
dc.identifier.doi10.6814/NCCU202100475en_US
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypethesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
304401.pdf4.26 MBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.