Please use this identifier to cite or link to this item: `https://ah.nccu.edu.tw/handle/140.119/137293`

 Title: 暫現狀態下具長域隨機漫步在整數晶格點的格林函數與容積的漸近行為Asymptotic Behaviors of the Green Function and Capacity for Transient State Random Walks with Long-Range Interactions Authors: 陳濬程Chen, Jiun-Cheng Contributors: 陳隆奇Chen, Lung-Chi陳濬程Chen, Jiun-Cheng Keywords: 長域隨機漫步格林函數容積Green FunctionCapacityLong-Range Random Walk Date: 2021 Issue Date: 2021-10-01 10:05:32 (UTC+8) Abstract: 在整數晶格 Zd 上的隨機漫步 S_n^x = x + X1 + X2 +...+ Xn，Xi, i = 1, 2, · · · , n 皆獨立且具有相同分佈 D(x)。此論文，我們假設 D(x) 在 Zd 空間情形下擁有對稱性且當 |x| → ∞ 時，遞減速率為 |x|−d−α，其中 α ∈ (0, ∞) \ {2} 且 d > α ∧ 2。本文主要是探討此具長域隨機漫步下的一些 漸近行為。第一個主要結果在於獲得此模型之格林函數的漸近行為，此外 我們還得到主要項係數及其收斂速度;第二個主要結果在討論容積的漸近 行為，並且進一步得到在長域隨機漫步下的 Wiener’s Criterion。Let S_n^x = x + X1 + X2 +...+ Xn are independent identically distributed random vectors with distribution D(x). In the thesis, we suppose that the distribution D(x) is symmetric on Zd and the rate of decayisoforder|x|−d−α as|x|→∞withα∈(0,∞)\{2}andd>α∧2,where a ∧ b = min {a, b}. The purpose of the thesis is to investigate asymptotic behaviors of the long-range random walk. First of all, we get the asymptotic behavior of the Green function. Moreover, we obtain the coefficient of the main term and its rates of convergence. Secondly, we discuss the asymptotic behavior of the capacity for the long-range random walk. Moreover, we derive the Wiener’s Criterion for the long-range random walk. Reference: [1] Béla Bollobás. Random Graphs. Cambridge University Press, Cambridge, 2001.[2] Maury Bramson, Ofer Zeitouni, and Martin P. W. Zerner. Shortest spanning trees and a counterexample for random walks in random environments. The Annals of Probability, 34(3):821 – 856, 2006.[3] George Green. An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. Nottingham, July 1828.[4] N. Jain and S. Orey. On the range of random walk. Israel Journal of Mathematics, 6(4): 373–380, 1968.[5] Gregory F. Lawler. Intersections of random walks / Gregory F. Lawler. Probability and its applications. Birkhäuser, Boston, 1991.[6] KARL PEARSON. The problem of the random walk. Nature, 72(1865):294–294, 1905.[7] Serguei Popov. Two-Dimensional Random Walk: From Path Counting to Random Interlacements. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2021.[8] C E Soteros and S G Whittington. The statistical mechanics of random copolymers. Journal of Physics A: Mathematical and General, 37(41):R279–R325, sep 2004.[9] Michel Talagrand. Spin glasses : a challenge for mathematicians : cavity and mean field models / Michel Talagrand. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, v. 46. Springer, New York, 2003.[10] Robert Brown F.R.S. Hon. M.R.S.E. & R.I. Acad. V.P.L.S. Xxvii. a brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine, 4(21):161–173, 1828. Description: 碩士國立政治大學應用數學系108751012 Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108751012 Data Type: thesis Appears in Collections: [應用數學系] 學位論文

Files in This Item:

File SizeFormat