Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/32677
DC FieldValueLanguage
dc.contributor.advisor蔡子傑zh_TW
dc.contributor.advisorTsai, Tzu-Chiehen_US
dc.contributor.author張志華zh_TW
dc.contributor.authorChang, Chih-Huaen_US
dc.creator張志華zh_TW
dc.creatorChang, Chih-Huaen_US
dc.date2007en_US
dc.date.accessioned2009-09-17T06:02:23Z-
dc.date.available2009-09-17T06:02:23Z-
dc.date.issued2009-09-17T06:02:23Z-
dc.identifierG0094753009en_US
dc.identifier.urihttps://nccur.lib.nccu.edu.tw/handle/140.119/32677-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學學系zh_TW
dc.description94753009zh_TW
dc.description96zh_TW
dc.description.abstract802.16與802.11e均有提供服務品質(QoS),但是其MAC並不相同,為了達到QoS的保證,我們使用馬可夫鍊(Markov Chain)模型分析在不同連線數量時802.11e EDCA的延遲時間(delay time)。然後,我們可以再利用允入控制(CAC)機制限制連線的數量以保證延遲時間的需求,並使用令牌桶(Token Bucket)機制,在滿足延遲及頻寬的需求下控制輸出流量,在我們的令牌桶機制中可以依照頻寬需求的變化自動調整令牌(Token)產生速率,最後使用封包丟棄機制提升吞吐量(throughput)。\n  在提出我們的方法後,我們使用Qualnet模擬器驗證延遲時間、封包丟棄率及吞吐量,結果表示我們所提出的方法在三方面都有明顯的改進。zh_TW
dc.description.abstractIEEE 802.16 and 802.11e both provide Quality of Service (QoS), but the MAC of betweens is different. Ensuring the QoS guarantee, we use a Markov Chain model to analyze the 802.11e EDCA delay time under variance number of connections. Therefore, we can employ a CAC mechanism constraining the number of connections to guarantee the delay requirement. Further, considering the delay requirement and the bandwidth, we use a Token Bucket mechanism to throttle the traffic output that ensures the delay and bandwidth to be satisfied. And our Token Bucket mechanism can tune the token rate automatically by bandwidth requirement. Finally, we use the Packet Drop mechanism to improve throughput.\n After my methodology, we validate the delay, packet drop rate and throughput by simulator Qualnet. We have significant improvement in delay, drop rate, and throughput.en_US
dc.description.tableofcontentsCHAPTER 1 Introduction 1\n1.1. Background 3\n1.1.1. Token Bucket Mechanism 3\n1.1.2. The IEEE 802.11 Standard 4\n1.1.3. The IEEE 802.11e Standard 5\n1.1.4. The IEEE 802.16 Standard 9\n1.2. Motivation 13\n1.3. Organization 14\nCHAPTER 2 Related Work 15\n2.1. Markov Chain Studies about 802.11e 15\n2.2. Token Bucket and Call Admission Control about 802.16 18\nCHAPTER 3 IEEE 802.11e EDCA Markov Chain Model 22\n3.1. Model Assumption 23\n3.2. Model Introduction 23\n3.3. Markov Chain State 26\n3.4. Transition Probability Matrix 27\n3.5. Delay, Throughput and Packet Drop rate Calculation 33\n3.6. Model Validation 34\n3.6.1. 802.11e MAC Delay 36\n3.6.2. 802.11e Packet Drop rate & Throughput 38\nCHAPTER 4 Improvement Mechanism 40\n4.1. Call Admission Control (CAC) 40\n4.1.1. Delay requirement 40\n4.1.2. Bandwidth requirement 41\n4.2. Token Bucket Mechanism 42\n4.2.1. Token Bucket Parameters 42\n4.2.2. Token Rate and Bucket Size Initialize 44\n4.2.3. Token Rate and Bucket Size Tuning 44\n4.3. Packet Drop Mechanism 47\nCHAPTER 5 Simulation 48\n5.1. Delay 49\n5.2. Packet Drop rate 51\n5.3. Throughput 53\nCHAPTER 6 Conclusions and Future Work 55\nReferences 56zh_TW
dc.format.extent83878 bytes-
dc.format.extent93923 bytes-
dc.format.extent20958 bytes-
dc.format.extent38175 bytes-
dc.format.extent237274 bytes-
dc.format.extent222176 bytes-
dc.format.extent187805 bytes-
dc.format.extent80332 bytes-
dc.format.extent72867 bytes-
dc.format.extent23764 bytes-
dc.format.extent34346 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.language.isoen_US-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0094753009en_US
dc.subject服務品質zh_TW
dc.subject馬可夫鍊zh_TW
dc.subject令牌桶zh_TW
dc.subjectQoSen_US
dc.subjectMarkov Chainen_US
dc.subjectToken Bucketen_US
dc.titleIEEE 802.16與802.11e整合環境的服務品質保證zh_TW
dc.titleQoS Guarantee for IEEE 802.16 Integrating with 802.11een_US
dc.typethesisen
dc.relation.reference[1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999zh_TW
dc.relation.reference[2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999zh_TW
dc.relation.reference[3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999zh_TW
dc.relation.reference[4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003zh_TW
dc.relation.reference[5] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems”, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96zh_TW
dc.relation.reference[6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000zh_TW
dc.relation.reference[7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002zh_TW
dc.relation.reference[8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004zh_TW
dc.relation.reference[9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002zh_TW
dc.relation.reference[10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003zh_TW
dc.relation.reference[11] Tzu-Chieh Tsai, and Ming-Ju Wu, \"An Analytical Model for IEEE 802.11e EDCA\", in IEEE 2005 International Conference on Communications (ICC 2005 Wireless Networking), 16-20 May, 2005, Seoul, Korea. pp. 3474 - 3478.(ISSN: 0536-1486, EI)zh_TW
dc.relation.reference[12] Chi-Hong Jiang, and Tzu-Chieh Tsai, \"Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks\", CCNC2006, Special Session on Multimedia and QoS in Wireless Networks, MP1-02-3, Jan 8-10, 2006, Las Vegas, USA.(EI)zh_TW
dc.relation.reference[13] Tzu-Chieh Tsai and Chuan-Yin Wang, \"Routing and Admission Control in IEEE 802.16 Distributed Mesh Networks\", in IEEE Fourth International Conference on Wireless and Optical Communications Networks\" (WOCN 2007), July 2, 3 and 4, 2007, Singapore. (IEEE Catalog Number: 07EX1696, ISBN: 1-4244-1005-3, Library of Congress: 2007920880), (Engineering Index (EI) and EI Compendex).zh_TW
item.languageiso639-1en_US-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypethesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.grantfulltextopen-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
300901.pdf81.91 kBAdobe PDF2View/Open
300902.pdf91.72 kBAdobe PDF2View/Open
300903.pdf20.47 kBAdobe PDF2View/Open
300904.pdf37.28 kBAdobe PDF2View/Open
300905.pdf231.71 kBAdobe PDF2View/Open
300906.pdf216.97 kBAdobe PDF2View/Open
300907.pdf183.4 kBAdobe PDF2View/Open
300908.pdf78.45 kBAdobe PDF2View/Open
300909.pdf71.16 kBAdobe PDF2View/Open
300910.pdf23.21 kBAdobe PDF2View/Open
300911.pdf33.54 kBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.