Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/32684
DC FieldValueLanguage
dc.contributor.advisor李蔡彥zh_TW
dc.contributor.advisorLi,Tsai Yenen_US
dc.contributor.author陳俊傑zh_TW
dc.contributor.authorChen,Chun Chiehen_US
dc.creator陳俊傑zh_TW
dc.creatorChen,Chun Chiehen_US
dc.date2006en_US
dc.date.accessioned2009-09-17T06:03:21Z-
dc.date.available2009-09-17T06:03:21Z-
dc.date.issued2009-09-17T06:03:21Z-
dc.identifierG0094753025en_US
dc.identifier.urihttps://nccur.lib.nccu.edu.tw/handle/140.119/32684-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description資訊科學學系zh_TW
dc.description94753025zh_TW
dc.description95zh_TW
dc.description.abstract在3D遊戲中,讓虛擬角色能夠在場景中自主的和使用者進行即時互動,一直是一個非常有挑戰性的問題。過去在此方面的相關研究雖然為數不少,但大多數的研究不是用效能來換取角色動作的規劃品質,就是屈就於效能而決定犧牲品質,能妥善的在兩者之間取得平衡的系統並不常見。本論文所提出的系統,便是一個能在兩者之間取得不錯平衡的角色動作規劃器。我們的規劃器會根據使用者的操作命令來預測角色未來可行的行動空間,並搭配時間預算的概念,將這些預測結果儲存在一種稱為可行動作樹的資料結構,從這些預測結果中搜尋出最符合使用者操作要求的角色動作。我們利用這個規劃器實作了兩種不同的應用,並測試了它們的效能。我們相信這個運動模組能實用在一般如遊戲的即時動畫環境中,提昇動畫角色的互動性與動畫品質。zh_TW
dc.description.abstractAllowing a virtual character to interact with the user autonomously in a 3D game has been a challenging problem for long. There has been much research in this direction but most of them have to trade interactivity of control with the quality of the generated motions or the other way. It is rare to see a system that can find a good balance between these two factors. In this thesis, we propose an interactive system consisting of a motion planner aiming to find a good balance between these two factors. Our planner attempts to predict the feasible motion space in the near future according to user commands. We use the concept of time-budgeted computing to maintain a data structure called Feasible Motion Tree representing the feasible motion space. This tree is maintained in an incremental fashion and is used to select the most appropriate motion clip when the current motion clip comes to the end. We have used this motion planning module to implement two different applications and verify its efficacy and efficiency. We believe that this motion planning module can be used in a real-time virtual environment, such as a game, for the improvement of the interactivity and the quality of motion control.en_US
dc.description.tableofcontents第一章 導論 1\n1.1 簡介 1\n1.2 研究動機與目的 3\n1.3 論文貢獻 4\n1.4 論文章節架構 4\n第二章 相關研究 5\n2.1 運動計畫演算法 5\n2.2 角色動畫的生成 6\n2.3 反應機制的設計 9\n第三章 系統總覽 10\n3.1. 問題描述 10\n3.1.1. 整體問題描述 10\n3.1.2. 場景定義 11\n3.1.3. 角色組態定義 12\n3.1.4. 使用者的輸入 13\n3.1.5. 角色的運動計畫 13\n3.2. 系統概述 14\n3.2.1. 設計構想及系統架構 14\n3.2.2. 角色動作預測 16\n3.2.3. 角色動作更新 16\n3.2.4. 場景更新 17\n第四章 角色動作預測 18\n4.1 問題描述 18\n4.2 元件介紹 19\n4.2.1 動作預測器 19\n4.2.2 可行動作樹 20\n4.3 角色動作預測 21\n4.3.1 運作流程 21\n4.3.2 擴展可行動作樹的實作說明 22\n4.3.3 擴展優先權的計算 25\n第五章 角色動作及場景的更新 29\n5.1 運作流程 29\n5.2 元件介紹 30\n5.3 可行動作樹的分析及選擇 32\n5.4 調整可行動作樹 34\n5.5 修正可行動作樹 36\n第六章 實驗結果與討論 38\n6.1 實作與實驗環境 38\n6.2 角色操作系統 41\n6.2.1 系統設計 41\n6.2.2 實驗一:實用性測試 44\n6.2.3 實驗二:不同擴展策略的比較 48\n6.3 飛彈射擊遊戲 51\n6.3.1 系統設計 51\n6.3.2 實驗一:效用測試 55\n6.3.3 實驗二:不同射擊條件測試 57\n6.3.4 實驗三:不同擴展策略的比較 60\n6.3.5 實驗四:不同動作樹分析方法的比較 61\n第七章 結論與未來發展 63\n7.1 結論 63\n7.2 未來發展 63\n參考文獻 65zh_TW
dc.format.extent44394 bytes-
dc.format.extent61493 bytes-
dc.format.extent68269 bytes-
dc.format.extent85688 bytes-
dc.format.extent125456 bytes-
dc.format.extent242364 bytes-
dc.format.extent568664 bytes-
dc.format.extent1231371 bytes-
dc.format.extent295188 bytes-
dc.format.extent1776303 bytes-
dc.format.extent72879 bytes-
dc.format.extent41503 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.language.isoen_US-
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#G0094753025en_US
dc.subject3D遊戲zh_TW
dc.subject智慧型角色zh_TW
dc.subject運動控制zh_TW
dc.subject運動計畫zh_TW
dc.subject3D Gameen_US
dc.subjectIntelligent Characteren_US
dc.subjectMotion Controlen_US
dc.subjectMotion Planningen_US
dc.title3D遊戲中智慧型角色的互動式運動控制zh_TW
dc.titleInteractive Motion Control for Intelligent Characters in 3D Gamesen_US
dc.typethesisen
dc.relation.reference[1] A. Bruderlin and T. W. Calvert, “Goal-Directed, Dynamic Animation of Human Walking,” in Proc. of the ACM SIGGRAPH, 1989.zh_TW
dc.relation.reference[2] A. C. Fang and N. S. Pollard, “Efficient Synthesis of Physically Valid Human Motion,” in Proc. of the ACM SIGGRAPH, 2003.zh_TW
dc.relation.reference[3] B. L. Callennec and R. Boulic, “Interactive Motion Deformation with Prioritized Constraints,” in Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2004.zh_TW
dc.relation.reference[4] B. Salomon, M. Garber, M.C. Lin and D. Manocha, “Interactive Navigation in Complex Environments Using Path Planning,” in Proc. of the Symposium on Interactive 3D Graphics, p41-50, 2003.zh_TW
dc.relation.reference[5] C. K. Liu and Z. Popovic, “Synthesis of Complex Dynamic Character Motion from Simple Animations,” in Proc. of the ACM SIGGRAPH, 2002.zh_TW
dc.relation.reference[6] CMU Graphics Lab Motion Capture Databasezh_TW
dc.relation.referencehttp://mocap.cs.cmu.edu/zh_TW
dc.relation.reference[7] E. Hsu, Kari Pulli and Jovan Popovic, “Style Translation for Human Motion,” in Proc. of the ACM SIGGRAPH, 2005.zh_TW
dc.relation.reference[8] G., V. den Bergen, “Efficient Collision Detection of Complex Deformable Models Using AABB Trees,” Journal of Graphics Tools, 2, (4): 1-14, 1997.zh_TW
dc.relation.reference[9] H. C. Sun and D. Metaxas, “Automating Gait Generation,” in Proc. of the ACM SIGGRAPH, 2001.zh_TW
dc.relation.reference[10] H. Ko and Norman I. Badler, “Animating Human Locomotion with Inverse Dynamics,” IEEE Transaction on Computer Graphics, 16(2), pp.50-59. 1996.zh_TW
dc.relation.reference[11] H. Li, W. Tang and D. Simpson, “Behaviour Based Motion Simulation for Fire Evacuation Procedures,” in Proc. of the Theory and Practice of Computer Graphics, 2004.zh_TW
dc.relation.reference[12] J. K. Hodgins, “Three-Dimensional Human Running,” in Proc. of the IEEE Conference on Robotics and Automation, 1996.zh_TW
dc.relation.reference[13] J. K. Hodgins, W. L. Wooten, D. C. Brogan and J. F. O`Brien, “Animating Human Athletics,” in Proc. of the ACM SIGGRAPH, 1995.zh_TW
dc.relation.reference[14] J. Lee and K. H. Lee, “Precomputing Avatar Behavior from Human Motion Data,” in Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2004.zh_TW
dc.relation.reference[15] J.Y. Chang and T.Y. Li, \"Simulating Crowd Motion with Shape Preference and Fuzzy Rules,\" in Proc of International Symposium on Artificial Life and Robotics, 2007.zh_TW
dc.relation.reference[16] L. Kavraki, P. Svestka, J.C. Latombe and M. H. Overmars, “Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Space,” in IEEE Trans. On Robotics and Animation, 12, (4): 566-580, 1996.zh_TW
dc.relation.reference[17] L. Kovar, M. Gleicher and F. Pighin, “Motion Graphs,” in Proc. of the ACM SIGGRAPH, 2002.zh_TW
dc.relation.reference[18] M. Gleicher, H. Shin, Lucas Kovar and Andrew Jepsen, “Snap-Together Motion: Assembling Run-Time Animations,” in Proc. of Symposium on Interactive 3D Graphics. 2003.zh_TW
dc.relation.reference[19] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann, “Planning Collision-Free Reaching Motions for Interactive Object Manipulation and Grasping,” in Proc. of Eurographics, 2003.zh_TW
dc.relation.reference[20] M. Lau and J. Kuffner, “Behavior Planning for Character Animation,” in Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2005.zh_TW
dc.relation.reference[21] M. Lau and J. Kuffner, “Precomputed Search Trees: Planning for Interactive Goal-Driven Animation,” in Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2006.zh_TW
dc.relation.reference[22] M.H. Overmars and P. Svestka, “A probabilistic Learning Approach to Motion Planning,” in Proc. of the Workshop on Algorithmic Foundations of Robotics, p19-37, 1995.zh_TW
dc.relation.reference[23] O. Arikan and D.A. Forsyth, “Interactive Motion Generation from Examples,” in Proc. of the ACM SIGGRAPH, 2002.zh_TW
dc.relation.reference[24] S.M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Technical Report, Computer Science Dept., Iowa State University, 1998.zh_TW
dc.relation.reference[25] S.W. Hsu and T.Y. Li, \"Third-Person Intelligent Control of Humanoid with Real-Time Motion Planning Algorithm,\" in Proc of IEEE International Conference on Intelligent Robots and Systems, 2006.zh_TW
dc.relation.reference[26] T.Y. Li, P.F. Chen and P.Z. Huang, “Motion Planning for Humanoid Walking in a Layered Environment.” in Proc. of the IEEE Int. Conf. on Robotics and Automation, p3421-3427, 2003.zh_TW
dc.relation.reference[27] T. Simeon, J.-P. Laumond. and C. Nissoux, “Visibility-based probabilistic roadmaps for motion planning,” Advanced Robotics Journal, 14(6).zh_TW
dc.relation.reference[28] W. Shao and D. Terzopoulos, “Autonomous Pedestrians,” in Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2005.zh_TW
dc.relation.reference[29] M. Sung, L. Kovar and M. Gleicher, “Fast and accurate goal-directed motion synthesis for crowds,” in Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2005.zh_TW
dc.relation.reference[30] J. Lee and L.H Lee, “Interactive Control of Avatars Animated with Human Motion Data,” in Proc. of the ACM SIGGRAPH, 2002.zh_TW
dc.relation.reference[31] A. P. Witkin and Z. Popovic, “ Motion warping,” in Proc. of the ACM SIGGRAPH, 1995.zh_TW
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypethesis-
item.grantfulltextopen-
Appears in Collections:學位論文
Files in This Item:
File Description SizeFormat
302501.pdf43.35 kBAdobe PDF2View/Open
302502.pdf60.05 kBAdobe PDF2View/Open
302503.pdf66.67 kBAdobe PDF2View/Open
302504.pdf83.68 kBAdobe PDF2View/Open
302505.pdf122.52 kBAdobe PDF2View/Open
302506.pdf236.68 kBAdobe PDF2View/Open
302507.pdf555.34 kBAdobe PDF2View/Open
302508.pdf1.2 MBAdobe PDF2View/Open
302509.pdf288.27 kBAdobe PDF2View/Open
302510.pdf1.73 MBAdobe PDF2View/Open
302511.pdf71.17 kBAdobe PDF2View/Open
302512.pdf40.53 kBAdobe PDF2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.