Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 不完全資訊下對局的探討
作者 張光華
Chang, K.H.
貢獻者 李子壩
張光華
Chang,K.H.
關鍵詞 資訊
信念
型式
共識
共有p-信念
Information
Belief
Type
Common Knowledge
Common p-belief
日期 1994
1993
上傳時間 29-Apr-2016 15:30:46 (UTC+8)
摘要 對局理論的發展中,以往都著重於合作對局的探討與應用,且有相當的成
參考文獻 [1] Aumann,Rober J.(1976)” Agreeing to Disagree.” ,Annals of Statistics,4,1236-1239.
[2]Banks, Jeffrey S. & Sobel,Joel. (1987)” Equilibrium Selection in Signaling Games.”,Econometrica, Vol.55,No.3,647-661.
[3]Binmore,Kenneth. & Brandenberger,Adam. (1987)” Common Knowledge and Game Theory.” ,Disscussion Paper TE/88/167,STICERD,London Shool of Economics.
[4]Brandenburger, A. & Dekel,E.(1987)” Common Knowledge with Probability 1.”, J.Math. Econ,16, 237-245.
[5]Brandenburger, Adam.(1992)”Knowledge and Equilibrium in Games.” Journal of Economic Perspectives, Vol .6,No.4,83-101.
[6]Cho,In-Koo. & Sobel,Joel.(1990)”Strategic Stability and Uniqueness in Signaling Games.” ,Journal of Economic Theory,50,381-413.
[7]Cho,In-Koo. & Kreps, David M.(1987)”Signaling Games and Stable Equilibrium.”, The Quarierly Journal of Economics,102,179-221.
[8]Friedman, James.(1991) Game Theory with Application to Economics ,Second Edition, Oxford University Press.
[9]Fudenberg,Drew.& Tirole,Jean.(1991)”Perfect Baysian Equilibrium and Sequential Equilibrium.”, Journal of Economic Theory,53:236-260.
[10]Fudenberg,Drew. & Tirole,Jean.(1993)Game Theory, Third Printing,The MIT Press.
[11]Geanakopls,John.(1992)J” Common Knowledge.”, Journal of Economic Perspectives, Vol.6, No.4,43-82.
[12]Gibbons,Robert.(1992) A Primer in Game Theory, First Edition, Harvester Wheatsheaf.
[13]Glicksberg,I.L.(1952)” A further generalization of the Kakutani fixed point the-orem with application to Nash equilibrium points.”, Proceedings of the National Academy of Sciences 38, 170-174.
[14]Harsanyi,John.(1967)”Games with Incomplete Information Played by ‘Baysian’ Players 1,2,3.”, Management Science, 14,159-182, 320-334, and 486-502.
]15]Harsanyi,John.(1973)” Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points.”, International Journal of Game Theory,2,1-23.
[16]Kohlberg,Elon.&Mertens,J.F. (1986)” On the Strategic Stability of Equilibrium. “ Econometrica, Vol.54, No.5, 1003-1037.
[17]Kreps,David M.(1990) A Course in Microeconomic Theory, First Edition, Harvester Wheatsheaf.
[18]Krep,D. & Wilson, R.(1982)” Sequential Equilibrium.”, Econometrica,50;863-894
[19]Milgrom, P, & Weber, R.(1985)” Distributional strategies for games with incomplete information.”Mathematics of Operations Research,10,619-631.
[20]Monderer,Dov. & Samet, Dov.(1989)”Approximating Common Knowledge with Common Beliefs.”, Games and Economic Beheavior, 1,170-190.
[21]Myer, S & Majluf, N.(1984)” Corporate Financing and Investment Decision when Firms Have Information that Invsestors Do Not Have.”,Jouranl of Financial Economics,13:187-221.
[22]Nash,J.(1950)”Equilibrium points in n-person games.”, Proceedings of the National Academy of Sciences,36,48-49.
[23]Rasmusen, Eric.(1992) Games and Information, Third Edition, Cambridge University Press.
[24]Rubinstein, A.(1989)”The Electronic Mail Game:Strategic Behavior under “Al-most Common Knowledge”.”,American Economic Review 79,385-391.
[25]Selten,R.(1975)” Reexamination of the perfectness concept for equilibrium points in extensive games.”.International Journal of Game Theory,4:25-55.
[26]Spence,A.M. (1973)” Job Market Signaling.” Quarterly Journal of Economics, 87,355-374.
描述 碩士
國立政治大學
統計學系
81354002
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002003819
資料類型 thesis
dc.contributor.advisor 李子壩zh_TW
dc.contributor.author (Authors) 張光華zh_TW
dc.contributor.author (Authors) Chang,K.H.en_US
dc.creator (作者) 張光華zh_TW
dc.creator (作者) Chang, K.H.en_US
dc.date (日期) 1994en_US
dc.date (日期) 1993en_US
dc.date.accessioned 29-Apr-2016 15:30:46 (UTC+8)-
dc.date.available 29-Apr-2016 15:30:46 (UTC+8)-
dc.date.issued (上傳時間) 29-Apr-2016 15:30:46 (UTC+8)-
dc.identifier (Other Identifiers) B2002003819en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/88351-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 81354002zh_TW
dc.description.abstract (摘要) 對局理論的發展中,以往都著重於合作對局的探討與應用,且有相當的成zh_TW
dc.description.tableofcontents 第一章 前 言…………………………………………………………………………………………………1
第二章 古典對局…………………………………………………………………………………………………3
第一節 對局發展…………………………………………………………………………………………3
第二節 正規型式對局與擴展形式對局之求解方法…………………..………………6
第三節 混合策略Nash均衡之存在………………………………………………….………14
第三章 不完全資訊下的靜態對局……………………………………………………………………16
第一節 貝氏對局之均衡觀念……………………………………………………………………17
第二節 拍賣對局…………………………………………………………………………….…………19
第三節 貝氏均衡與Nash均衡………………………………………….………………………23
第四章 不完全資訊下的動態對局……………………………………………………………………28
第一節 完全貝氏均衡…………………………………………………………………….…………28
第二節 一般對局的精簡………………………………………………………………...…………29
第五章 不完全資訊下的動態對局-訊息對局…………………..……………………………39
第一節 訊息對局之均衡觀念……………………………………………………………………39
第二節 訊息對局精簡之方法……………………………………………………………………44
第三節 工會-廠商訊息對局……………………………………………………………………50
第六章 共 識(Common knowledge) ………………….…………………………………………55
第一節 共識的意義……………………………………..……………………………………………55
第二節 實例探討-電子郵件系統策略之選擇……………………..…………………62
第七章 共有p –信念(Common p-belief) ….………………………………………………………66
第一節 共有p-信念的意義………………………………………………………………………66
第二節 共有p-信念在貝氏對局的探討……………………..……………………………72
第八章 結 論…………………………………………………………………………….………….………78
參考文獻…………………………………………………………………………………………………….…………79
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002003819en_US
dc.subject (關鍵詞) 資訊zh_TW
dc.subject (關鍵詞) 信念zh_TW
dc.subject (關鍵詞) 型式zh_TW
dc.subject (關鍵詞) 共識zh_TW
dc.subject (關鍵詞) 共有p-信念zh_TW
dc.subject (關鍵詞) Informationen_US
dc.subject (關鍵詞) Beliefen_US
dc.subject (關鍵詞) Typeen_US
dc.subject (關鍵詞) Common Knowledgeen_US
dc.subject (關鍵詞) Common p-beliefen_US
dc.title (題名) 不完全資訊下對局的探討zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Aumann,Rober J.(1976)” Agreeing to Disagree.” ,Annals of Statistics,4,1236-1239.
[2]Banks, Jeffrey S. & Sobel,Joel. (1987)” Equilibrium Selection in Signaling Games.”,Econometrica, Vol.55,No.3,647-661.
[3]Binmore,Kenneth. & Brandenberger,Adam. (1987)” Common Knowledge and Game Theory.” ,Disscussion Paper TE/88/167,STICERD,London Shool of Economics.
[4]Brandenburger, A. & Dekel,E.(1987)” Common Knowledge with Probability 1.”, J.Math. Econ,16, 237-245.
[5]Brandenburger, Adam.(1992)”Knowledge and Equilibrium in Games.” Journal of Economic Perspectives, Vol .6,No.4,83-101.
[6]Cho,In-Koo. & Sobel,Joel.(1990)”Strategic Stability and Uniqueness in Signaling Games.” ,Journal of Economic Theory,50,381-413.
[7]Cho,In-Koo. & Kreps, David M.(1987)”Signaling Games and Stable Equilibrium.”, The Quarierly Journal of Economics,102,179-221.
[8]Friedman, James.(1991) Game Theory with Application to Economics ,Second Edition, Oxford University Press.
[9]Fudenberg,Drew.& Tirole,Jean.(1991)”Perfect Baysian Equilibrium and Sequential Equilibrium.”, Journal of Economic Theory,53:236-260.
[10]Fudenberg,Drew. & Tirole,Jean.(1993)Game Theory, Third Printing,The MIT Press.
[11]Geanakopls,John.(1992)J” Common Knowledge.”, Journal of Economic Perspectives, Vol.6, No.4,43-82.
[12]Gibbons,Robert.(1992) A Primer in Game Theory, First Edition, Harvester Wheatsheaf.
[13]Glicksberg,I.L.(1952)” A further generalization of the Kakutani fixed point the-orem with application to Nash equilibrium points.”, Proceedings of the National Academy of Sciences 38, 170-174.
[14]Harsanyi,John.(1967)”Games with Incomplete Information Played by ‘Baysian’ Players 1,2,3.”, Management Science, 14,159-182, 320-334, and 486-502.
]15]Harsanyi,John.(1973)” Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points.”, International Journal of Game Theory,2,1-23.
[16]Kohlberg,Elon.&Mertens,J.F. (1986)” On the Strategic Stability of Equilibrium. “ Econometrica, Vol.54, No.5, 1003-1037.
[17]Kreps,David M.(1990) A Course in Microeconomic Theory, First Edition, Harvester Wheatsheaf.
[18]Krep,D. & Wilson, R.(1982)” Sequential Equilibrium.”, Econometrica,50;863-894
[19]Milgrom, P, & Weber, R.(1985)” Distributional strategies for games with incomplete information.”Mathematics of Operations Research,10,619-631.
[20]Monderer,Dov. & Samet, Dov.(1989)”Approximating Common Knowledge with Common Beliefs.”, Games and Economic Beheavior, 1,170-190.
[21]Myer, S & Majluf, N.(1984)” Corporate Financing and Investment Decision when Firms Have Information that Invsestors Do Not Have.”,Jouranl of Financial Economics,13:187-221.
[22]Nash,J.(1950)”Equilibrium points in n-person games.”, Proceedings of the National Academy of Sciences,36,48-49.
[23]Rasmusen, Eric.(1992) Games and Information, Third Edition, Cambridge University Press.
[24]Rubinstein, A.(1989)”The Electronic Mail Game:Strategic Behavior under “Al-most Common Knowledge”.”,American Economic Review 79,385-391.
[25]Selten,R.(1975)” Reexamination of the perfectness concept for equilibrium points in extensive games.”.International Journal of Game Theory,4:25-55.
[26]Spence,A.M. (1973)” Job Market Signaling.” Quarterly Journal of Economics, 87,355-374.
zh_TW