Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 改良式脊迴歸分析法於預測模式之應用
Applied Improved Ridge Regression Analysis作者 周玫芳
Chou, Mei Fang貢獻者 謝邦昌
Shia, Ben Chang
周玫芳
Chou, Mei Fang關鍵詞 脊迴歸
刀削法
偏量估計式
Ridge Regression
Jackknife
Biased estimator日期 1994
1993上傳時間 29-Apr-2016 15:31:04 (UTC+8) 摘要 當我們在應用迴歸分析法時,往往會遇到兩個或多個自變數間存在著線性 參考文獻 1.林燦隆、謝邦昌、唐榮澤,(1989),利用氣象因子建立甘蔗糖份含量之預測模式,台灣糖業研究所研究彙報,124:1-122.鄭敏祿,(1985),脊廻歸估計之模擬研究。國立政治大學統計學研究所碩士論文。3.謝邦昌,(1991),綜合預測模式之探討-甘蔗蔗產量及糖份含量依氣象因子二段式加權預測模式之研究。國立台灣大學農藝學研究所生物統計組博士論文。4. Brown, W.G. and Beattie, B.R. (1975).Improving Estimates Of Economic Parameters By Use Of Ridge Regression With Production Function Applications. Am.J.Agric.Econ.,57,21-325. Douglas, G.F.(1978).Ridge Regression:When Biased Estimation Is Better, Social Science Ouarterly, Vol.58,No.4,March: 708-7166. Draper, N. R. and Smith , H. (1981). Applied Regression Analysis, Second Edition, New York. 7.Ellen ,B.R.(1991). Prediction Error and Its Estimation for Subset-Selected Models, Technometrics, Vol.33, No.4,November:459-4678.Hinkley, D.V. (1977). Jackknifing In Unbalanced Situations, Technometrics, Vol.19,No.3,August:285-2929.Hoerl, A.E. and Kennard, R.W. (1970). Ridge Regression : Biased Estimation For Nonorthogonal Problems, Technometrics, Vol.12, No.1, February:55-6710. Hoerl, A.E. and Kennard, R.W. (1970). Ridge Regression : Applications to Nonorthogonal Problems , Technometrics, Vol.12, No.1, February:69-8311. Hoerl, A.E. Kennard, R.W. and Baldwin,K.F.(1975) Ridge Regression: Some Simulations, Communications In Statistics, 4(2), 105-12312.Hoerl,A.E. and Kennard,R.W.(1976).Ridge Regression : Iterative Estimation Of The Biased Parameter, Commun.Statis. Theor. Meth.A5(1):77-8813.John Neter, (1989). Applied Linear Regression Models, Second Edition, Boston.14.Loesgen,K.H.(1990). Generalization and Bayesian Interpretation of Ridge-Type Estimators with Good Prior Means, Statistical Papers, 31:147-15715.McDonald ,G.C. and Galarneau,D.I. (1975). A Monte Carlo evaluation of Some Ridge Type estimators.JASA,70:407-41616.Miller,R.G. (1968) Jackkinfing Variance. Ann.Math.Stqtist.,39:567-58217.Miller,R.G. (1974). An Unbalanced Jackknife, The Annals Of Statistics, Vol 2, No.5:880-89118.Nityananda Sarkar, (1992), A New Estimator Combining The Ridge Regression And The Restricted Least Squares Methods Of Estimation, Commun. Statist. Theory Meth.,21(7):1987-200019.Nordberg, L. (1982). A Procedure For Determination Of A Good Ridge Parameter In Linear Regression. Commun. Statist. B11:285-30920.Quenouille,M.H.(1956).Note On Bias In Estimation. Biometrika. 43:353-36021.SAS/IML User’s Guide.(1985). SAS Institute Inc. North Carolina.22.Segerstedt,B.(1992).On Ordinary Ridge Regression In Generalized Linear Models, Commun.Statist.-Theory Meth., 21(8):2227-224623.Shao,J. and Wu,C.F.J. (1987), Heterpscedastocoty-Robustness Of Jackknife Variance Estimators In Linear Models, The Annals Of Statistics, Vol.15 ,No. 4:1563-157924.Shao,J.(1992).Jackknifing In Generalized Linear Models, Ann.Inst. Statist. Math. Vol.44,No. 4,673-68625. Turkey, J.W. (1958) Bias And Confidence In Not-Quite Large Samples. Ann.Math.Statist.,29:614 描述 碩士
國立政治大學
統計學系
81354014資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002003827 資料類型 thesis dc.contributor.advisor 謝邦昌 zh_TW dc.contributor.advisor Shia, Ben Chang en_US dc.contributor.author (Authors) 周玫芳 zh_TW dc.contributor.author (Authors) Chou, Mei Fang en_US dc.creator (作者) 周玫芳 zh_TW dc.creator (作者) Chou, Mei Fang en_US dc.date (日期) 1994 en_US dc.date (日期) 1993 en_US dc.date.accessioned 29-Apr-2016 15:31:04 (UTC+8) - dc.date.available 29-Apr-2016 15:31:04 (UTC+8) - dc.date.issued (上傳時間) 29-Apr-2016 15:31:04 (UTC+8) - dc.identifier (Other Identifiers) B2002003827 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/88359 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 81354014 zh_TW dc.description.abstract (摘要) 當我們在應用迴歸分析法時,往往會遇到兩個或多個自變數間存在著線性 zh_TW dc.description.tableofcontents 第 一 章 緒論1-1 研究緣起………………………………………………………………………………………………………….11-2 研究動機與目的……………………………………………………..……………………………………….21-3 研究方法及架構…………………………..………………………………………………………………….8第 二 章 前人研究2-1 脊迴歸方面之文獻探討………………………………………………………………….…….………….92-2 Jackknife估計法之文獻探討…………………………………………………….……………….….112-3 改良式脊迴歸分析法之文獻探討……………………………………………….………………….13第 三 章 理論方法3-1 脊迴歸分析……………………………………………………………………………….…………………….143-2 Jackknife取一法………………………………………………..………………………………………….233-3 改良式脊迴歸估計法……………………………………………………………….…………………….29第 四 章 實例探討與模擬研究4-1 實例探討…………………………………………………………………………….………………….……….344-2 電腦模擬………………………………………………………………………….…………………….……….384-3 模擬結果……………………………………………………………………….……………………….……….41第 五 章 結論………………………………………….…………………………………….…………….53參考文獻……………………………………………………………………………………..……………..………….56附錄一 SAS/IML程式……………………………………….……..…………………………………….59附錄二 實例探討之原始資料及輸出結果…………………………………………………….62表目錄表 一 傳統脊估式與改良式脊估式預測能力之比較……………………..…………..………35表 二 Jackknife取一法n個估計系數………………………………………………………….………36表 三 r² = 0.1傳統脊估式與改良式脊估式之比較分析………………..…………..………43表 四 r² = 0.3傳統脊估式與改良式脊估式之比較分析……………………..……..………44表 五 r² = 0.5傳統脊估式與改良式脊估式之比較分析…………………………....………45表 六 r² = 0.7傳統脊估式與改良式脊估式之比較分析……………………..……..………46表 七 r² = 0.9傳統脊估式與改良式脊估式之比較分析………..……………….….………47表 八 傳統脊估式與改良式脊估式之比較分析……………………………….…………………48圖目錄圖 一 bR 與b之抽樣分配……………………………………………………………………………………14圖 二 傳統脊估式與改良式脊估式的預測情形……………………………………….…………35圖 三 r² = 0.1 Td²與I d²之比較……………………………………………………..………………………49圖 四 r² = 0.3 Td²與I d²之比較………………………………………..……………………………………49圖 五 r² = 0.5 Td²與I d²之比較…………………………………………………………………………..…50圖 六 r² = 0.7 Td²與I d²之比較…………………………………………………..…………………………50圖 七 r² = 0.9 Td²與I d²之比較……………………………………………………………………………..51圖 八 不同共線性下兩估計式之bias²…………………………………………………………………51圖 九 不同共線性下兩估計式之MSE…………………………………………………………………52圖 十 不同共線性下兩估計式之bias²與MSE…………………………………………………….52 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002003827 en_US dc.subject (關鍵詞) 脊迴歸 zh_TW dc.subject (關鍵詞) 刀削法 zh_TW dc.subject (關鍵詞) 偏量估計式 zh_TW dc.subject (關鍵詞) Ridge Regression en_US dc.subject (關鍵詞) Jackknife en_US dc.subject (關鍵詞) Biased estimator en_US dc.title (題名) 改良式脊迴歸分析法於預測模式之應用 zh_TW dc.title (題名) Applied Improved Ridge Regression Analysis en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 1.林燦隆、謝邦昌、唐榮澤,(1989),利用氣象因子建立甘蔗糖份含量之預測模式,台灣糖業研究所研究彙報,124:1-122.鄭敏祿,(1985),脊廻歸估計之模擬研究。國立政治大學統計學研究所碩士論文。3.謝邦昌,(1991),綜合預測模式之探討-甘蔗蔗產量及糖份含量依氣象因子二段式加權預測模式之研究。國立台灣大學農藝學研究所生物統計組博士論文。4. Brown, W.G. and Beattie, B.R. (1975).Improving Estimates Of Economic Parameters By Use Of Ridge Regression With Production Function Applications. Am.J.Agric.Econ.,57,21-325. Douglas, G.F.(1978).Ridge Regression:When Biased Estimation Is Better, Social Science Ouarterly, Vol.58,No.4,March: 708-7166. Draper, N. R. and Smith , H. (1981). Applied Regression Analysis, Second Edition, New York. 7.Ellen ,B.R.(1991). Prediction Error and Its Estimation for Subset-Selected Models, Technometrics, Vol.33, No.4,November:459-4678.Hinkley, D.V. (1977). Jackknifing In Unbalanced Situations, Technometrics, Vol.19,No.3,August:285-2929.Hoerl, A.E. and Kennard, R.W. (1970). Ridge Regression : Biased Estimation For Nonorthogonal Problems, Technometrics, Vol.12, No.1, February:55-6710. Hoerl, A.E. and Kennard, R.W. (1970). Ridge Regression : Applications to Nonorthogonal Problems , Technometrics, Vol.12, No.1, February:69-8311. Hoerl, A.E. Kennard, R.W. and Baldwin,K.F.(1975) Ridge Regression: Some Simulations, Communications In Statistics, 4(2), 105-12312.Hoerl,A.E. and Kennard,R.W.(1976).Ridge Regression : Iterative Estimation Of The Biased Parameter, Commun.Statis. Theor. Meth.A5(1):77-8813.John Neter, (1989). Applied Linear Regression Models, Second Edition, Boston.14.Loesgen,K.H.(1990). Generalization and Bayesian Interpretation of Ridge-Type Estimators with Good Prior Means, Statistical Papers, 31:147-15715.McDonald ,G.C. and Galarneau,D.I. (1975). A Monte Carlo evaluation of Some Ridge Type estimators.JASA,70:407-41616.Miller,R.G. (1968) Jackkinfing Variance. Ann.Math.Stqtist.,39:567-58217.Miller,R.G. (1974). An Unbalanced Jackknife, The Annals Of Statistics, Vol 2, No.5:880-89118.Nityananda Sarkar, (1992), A New Estimator Combining The Ridge Regression And The Restricted Least Squares Methods Of Estimation, Commun. Statist. Theory Meth.,21(7):1987-200019.Nordberg, L. (1982). A Procedure For Determination Of A Good Ridge Parameter In Linear Regression. Commun. Statist. B11:285-30920.Quenouille,M.H.(1956).Note On Bias In Estimation. Biometrika. 43:353-36021.SAS/IML User’s Guide.(1985). SAS Institute Inc. North Carolina.22.Segerstedt,B.(1992).On Ordinary Ridge Regression In Generalized Linear Models, Commun.Statist.-Theory Meth., 21(8):2227-224623.Shao,J. and Wu,C.F.J. (1987), Heterpscedastocoty-Robustness Of Jackknife Variance Estimators In Linear Models, The Annals Of Statistics, Vol.15 ,No. 4:1563-157924.Shao,J.(1992).Jackknifing In Generalized Linear Models, Ann.Inst. Statist. Math. Vol.44,No. 4,673-68625. Turkey, J.W. (1958) Bias And Confidence In Not-Quite Large Samples. Ann.Math.Statist.,29:614 zh_TW