Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 推理類神經網路及其應用
The Reasoning Neural Network and It`s Applications作者 徐志鈞
Chun, Hsu Chih貢獻者 蔡瑞煌
Tsaih
徐志鈞
Hsu Chih Chun關鍵詞 推理類神經網路
軟性學習程序
線性分割條件
不相關節點
推理機能
The Reasoning Neural Network
the softening learning algorithm
linearly separating condition日期 1994 上傳時間 29-Apr-2016 16:30:45 (UTC+8) 摘要 大部的類神經網路均為解決特定問題而設計,並非真正去模擬人腦的功能
Most of artification Neural Networks are designed to resolve參考文獻 Bibliography 中文部份 [葉怡成93]葉怡成,類神經網路模式應用與實作,儒林圖書公司,民國八十三年. 英文部份 [Arai89] Arai M., "Mapping abilities of three-Layer Neural Networks, ", In Proceedings of the International Conference on Neural Networks (Washington, DC:IEEE), pp I:419-424, 1989. [Arai93] Arai M., "Bounds on the Number of Hidden Nodes in Binary-Valued Three-Layer Neural Networks,", In IEEE Transactions on Neural Networks vol 6, pp 855-860, 1993. [Chau89] Y. Chauvin, "A back-propagation algorithm with optimal use of hidden node," In Advance in Neural Information Processing (2), D.S . Toutetzky, Ed. (Denver 1988), 1989,pp. 519-526. [Cybe89] G. Cybenko, "Approximation by superpositions of a sigmoidal function," Mathematics of Control, Signals, and Systems, 2(4): pp. 303-314, 1989. [Cast93] Castellano G., Fanelli A. M., Pelillo M. ,"An Empirical Comparsion of Node Pruning Methods for Layerd Feed-forward Neural Networks", In Proceedings of 1993 International Joint Conference on Neural Networks, pp 321-326, 1993. [Cun90] Y. Ie Cun, 1.s. Denker, and S.A. Solla, "Optimal brain damage." In D. Tourezky, editor, Advances in Neural Information ProceSSing System 2, pp 598-605. Morgan Kaufmann, 1990. [Free92] Freeman 1. A. , Skapura D. M.,"Neural Networks Algorithm, Applications, and Programming Techniques", Addison-Wesley, Reading MA, 1992. [Hertz91] J. Hertz, A. Krogh, R. Palmer, "Introduction to the theory of neural computation", Addison-Wesley, Reading MA, 1991. [Hagi93] Hagiwara M.,"Removal of hidden nodes and Weights for Back Propagation Networks", In Proceedings of 1993 International Joint Conference on Neural Networks, pp 35 1-353,1993. [Hajn87] A Hajnal, W. Maass, P.Pudlak, M. Szegedy, and G. Turan, "Threshold circuits of bounded depth." In Proceedings of the J 987 IEEE Symposium on the Funciations of Science, pp. 99-110,1987. [Hint87] Geoffrey E. Hinton and Terrence J. Sejnomsk.i. "Neural network architectures for AI" Tutolial No. MJ?2, AAA187, Seattle, W A, July 1987. [Huan91] Huang, S. c., & Huang, Y. F. "Bounds on the number of hidden neurons in multilayer perceptrons,", In IEEE Transactions on Neural Networks Vol 2, pp 47-55, 1991. [Hush93 J Don R. Hush and Bill G. Horne, "Progess in Supervised Neural Networks: What`s New Since Lippmann?", In IEEE SIGNAL ProceSSing magazine, pp 8-39, January 1993. [Ishi90] M. Ishikawa, "A structural learning algorithm with forgetting of link weights," Tech. Rep. TR-90-7, Electroteclmical Lab., Tsukuba-City, Japan, 1990. [Jac088] Adaptation." Neural Networks, Vol 1, pp 295-307. [Ji90] C. Ji, R.R. Snapp, and D. Psaltis, "Gereralizing smoothness constraints from discrete samples," Neural Commputation, Vol. 2, no. 2, pp. 188-197, 1990. [Kam90] E . D. Karnin,"A simple procedure for pruning back-propagation trained neural network," IEEE Trans. Neural Networks, Vol. 2, no. 2, pp. 239-242, 1990. [Krus88] Kruschke, J, "Creating local and distributed Bottlenecks in Hidden Layers of Back pop gat ion Networks," in Touretzky, D., Hiton, G., and Sejnowski, T (Eds): Proceeding oj the Connectionist Models Summer School 1988, Morgan Kaufman Pub!., San Mateo, California, 1988. [Makh89] 1. Makhoul, A. EI-Jaroudi, and R. Schwartz, " Fonnation of disconnected decision regions with a single hidden layer." In Proceedings oj the International Joint Conference on Neural Networks. Vol 1, pp 455-460, 1989. [Merz88] Merzenich, M.M., Recanzone, G., Jenkins, W.M., Allard, TT, and Nudo, R)., "Cortical Representional Plasticity," In Rakie, P. and Singer, W. (Eds) : Neurobiology of Neocortex. John Wiley and Sons Limited. S. Bernhard. Dahlem Konferenzen, 1988. [McIn89] McInerny, J.M., K.G. Hainer, S. Biafore, and R. Hecht-Nielsen (1989). "Back Propagation Error Surfaces Can Have Local Minima.", In International Joint Conference on Neural Networks (Washington 1989), vol. II, 627. New York:IEEE. [Mins69] Minsky, M.L. and S.A. Papert, "Perceptron," Cambridge: MIT Press. Partially reprinted in Anderson and Rosenberg, 1988. [Morg91J D.P. Morgan and c.L. Scofield, Neural Networks and Speech Processing. Kluwer Academic Publishers, 1991. [Moze89] M. C. Mozer and P. Smolensky, "Skeletonization: A technique for trimming the fat from a network via relevance assessment,", In Advances in Neural Information Processing (1), D.S. Touretzky, Ed. (Denver 1988), 1989, pp. 107-115. [Mura91] K.Murase, YMatsunaga and Y.Nakade: "A Back-propagation Algorithm with Automatically Determines the Number of Association Units", Proc. of International Joint Conference on Neural Networks(IJCNN-SINGAPORE), I, p.783-788, 1991. [pe1i93J M. Pelillo and A. M. Fanelli, "A method of pruning layered feed-forward neural networks," in Proc IWANN`93, Sitges, Barcelona, June 1993 (Berlin: Springer-Verlag). [Reed93] R. Reed, "Pruning A1goritluns-A Survey", in IEEE Transactions On Neural Network, Vo14, NO.5, September 1993, pp. 740-747. [Rume86] Rumelhart, D.E., James McClelland, "Parallel Distributed Processing, ", Vol 1 and 2, MIT Press, Cambridge, MA, 1986. [Siet88] Sietsma., 1. and R.lF. Dow (1988), "Neural Net Pruning-Why and How." In IEEE International Conference on Neural Networks (San Diego 1988), Vol. 1,325-333. New York:IEEE. [Tsai93] Tsaih, R., "The Softening Learning Procedure." In Mathematical and Computer Modeling, Vol. 18, No.8, 61-64. [Tsai93] Tsaih, R., "The Softening Learning Procedure for The Layered Feedforward Networks With Multiple Output nodes". Proceeding of Intemational Joint Conference on Neural Networks, Nagoya, I, 593-596. [Wata93] Watanabe E. and Shimizu H., "Algorithm for Pruning Hidden Nodes in Multi Layerd Neural Network for binary StimulusClassification Problem", In Proceedings of 1993 Intemational Joint Conference on Neural Networks, pp 327-330, 1993 . [Weig91] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-elimination with application to forcasting," in Advances in Neural Information Processing (3), R. Lippmann, J. Moody, and D. Touretzky, Eds, 1991, pp. 875-882. [Werb90] P. J. Werbos, "Backpropagation Through Time: What It Does and How to Do It", In Proceedings of the IEEE, Vol 78, No.1 0, October 1990, pp . 1550-1560. [Werb74] P. Werbos. IIBeyond Regression :New Tools for Prediction and the Analysis in the Behavioral Sciences." Ph.D. thesis, Harvard, Cambridge, MA, August 1974. 描述 碩士
國立政治大學
資訊管理學系
81356007資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002003876 資料類型 thesis dc.contributor.advisor 蔡瑞煌 zh_TW dc.contributor.advisor Tsaih en_US dc.contributor.author (Authors) 徐志鈞 zh_TW dc.contributor.author (Authors) Hsu Chih Chun en_US dc.creator (作者) 徐志鈞 zh_TW dc.creator (作者) Chun, Hsu Chih en_US dc.date (日期) 1994 en_US dc.date.accessioned 29-Apr-2016 16:30:45 (UTC+8) - dc.date.available 29-Apr-2016 16:30:45 (UTC+8) - dc.date.issued (上傳時間) 29-Apr-2016 16:30:45 (UTC+8) - dc.identifier (Other Identifiers) B2002003876 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/88696 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 81356007 zh_TW dc.description.abstract (摘要) 大部的類神經網路均為解決特定問題而設計,並非真正去模擬人腦的功能 zh_TW dc.description.abstract (摘要) Most of artification Neural Networks are designed to resolve en_US dc.description.tableofcontents Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Literature Review 2.1. The Back Propagation Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 The Back Propagation Learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .4 2.1.3 The Update Rule in The Back Propagation Learning algorithm . . . . . . . . . 7 2.1.4 Local Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.2 Node Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.1 Sensitivity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Penalty Term and Weight Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.2.3 Other pruning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.3 Softening Learning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 2.3.2 Two Classes Categorization Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 2.3.3 The Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.4 Cramming Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.3.5 Reasoning Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 3 The Reasoning Neural Network 3.1 The RNN Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Prime Parts of the RNN Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 One Edition of the RNN Learning Procedure . . . . . . . . . . . . . . . . . . . . . .. . . . . 29 4 Experiments 4.1 Parity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 4.2 Output-hidden problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 4.3 Encoder Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 Chinese character recognition problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 5 Discussions and Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Bibliography 48 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002003876 en_US dc.subject (關鍵詞) 推理類神經網路 zh_TW dc.subject (關鍵詞) 軟性學習程序 zh_TW dc.subject (關鍵詞) 線性分割條件 zh_TW dc.subject (關鍵詞) 不相關節點 zh_TW dc.subject (關鍵詞) 推理機能 zh_TW dc.subject (關鍵詞) The Reasoning Neural Network en_US dc.subject (關鍵詞) the softening learning algorithm en_US dc.subject (關鍵詞) linearly separating condition en_US dc.title (題名) 推理類神經網路及其應用 zh_TW dc.title (題名) The Reasoning Neural Network and It`s Applications en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) Bibliography 中文部份 [葉怡成93]葉怡成,類神經網路模式應用與實作,儒林圖書公司,民國八十三年. 英文部份 [Arai89] Arai M., "Mapping abilities of three-Layer Neural Networks, ", In Proceedings of the International Conference on Neural Networks (Washington, DC:IEEE), pp I:419-424, 1989. [Arai93] Arai M., "Bounds on the Number of Hidden Nodes in Binary-Valued Three-Layer Neural Networks,", In IEEE Transactions on Neural Networks vol 6, pp 855-860, 1993. [Chau89] Y. Chauvin, "A back-propagation algorithm with optimal use of hidden node," In Advance in Neural Information Processing (2), D.S . Toutetzky, Ed. (Denver 1988), 1989,pp. 519-526. [Cybe89] G. Cybenko, "Approximation by superpositions of a sigmoidal function," Mathematics of Control, Signals, and Systems, 2(4): pp. 303-314, 1989. [Cast93] Castellano G., Fanelli A. M., Pelillo M. ,"An Empirical Comparsion of Node Pruning Methods for Layerd Feed-forward Neural Networks", In Proceedings of 1993 International Joint Conference on Neural Networks, pp 321-326, 1993. [Cun90] Y. Ie Cun, 1.s. Denker, and S.A. Solla, "Optimal brain damage." In D. Tourezky, editor, Advances in Neural Information ProceSSing System 2, pp 598-605. Morgan Kaufmann, 1990. [Free92] Freeman 1. A. , Skapura D. M.,"Neural Networks Algorithm, Applications, and Programming Techniques", Addison-Wesley, Reading MA, 1992. [Hertz91] J. Hertz, A. Krogh, R. Palmer, "Introduction to the theory of neural computation", Addison-Wesley, Reading MA, 1991. [Hagi93] Hagiwara M.,"Removal of hidden nodes and Weights for Back Propagation Networks", In Proceedings of 1993 International Joint Conference on Neural Networks, pp 35 1-353,1993. [Hajn87] A Hajnal, W. Maass, P.Pudlak, M. Szegedy, and G. Turan, "Threshold circuits of bounded depth." In Proceedings of the J 987 IEEE Symposium on the Funciations of Science, pp. 99-110,1987. [Hint87] Geoffrey E. Hinton and Terrence J. Sejnomsk.i. "Neural network architectures for AI" Tutolial No. MJ?2, AAA187, Seattle, W A, July 1987. [Huan91] Huang, S. c., & Huang, Y. F. "Bounds on the number of hidden neurons in multilayer perceptrons,", In IEEE Transactions on Neural Networks Vol 2, pp 47-55, 1991. [Hush93 J Don R. Hush and Bill G. Horne, "Progess in Supervised Neural Networks: What`s New Since Lippmann?", In IEEE SIGNAL ProceSSing magazine, pp 8-39, January 1993. [Ishi90] M. Ishikawa, "A structural learning algorithm with forgetting of link weights," Tech. Rep. TR-90-7, Electroteclmical Lab., Tsukuba-City, Japan, 1990. [Jac088] Adaptation." Neural Networks, Vol 1, pp 295-307. [Ji90] C. Ji, R.R. Snapp, and D. Psaltis, "Gereralizing smoothness constraints from discrete samples," Neural Commputation, Vol. 2, no. 2, pp. 188-197, 1990. [Kam90] E . D. Karnin,"A simple procedure for pruning back-propagation trained neural network," IEEE Trans. Neural Networks, Vol. 2, no. 2, pp. 239-242, 1990. [Krus88] Kruschke, J, "Creating local and distributed Bottlenecks in Hidden Layers of Back pop gat ion Networks," in Touretzky, D., Hiton, G., and Sejnowski, T (Eds): Proceeding oj the Connectionist Models Summer School 1988, Morgan Kaufman Pub!., San Mateo, California, 1988. [Makh89] 1. Makhoul, A. EI-Jaroudi, and R. Schwartz, " Fonnation of disconnected decision regions with a single hidden layer." In Proceedings oj the International Joint Conference on Neural Networks. Vol 1, pp 455-460, 1989. [Merz88] Merzenich, M.M., Recanzone, G., Jenkins, W.M., Allard, TT, and Nudo, R)., "Cortical Representional Plasticity," In Rakie, P. and Singer, W. (Eds) : Neurobiology of Neocortex. John Wiley and Sons Limited. S. Bernhard. Dahlem Konferenzen, 1988. [McIn89] McInerny, J.M., K.G. Hainer, S. Biafore, and R. Hecht-Nielsen (1989). "Back Propagation Error Surfaces Can Have Local Minima.", In International Joint Conference on Neural Networks (Washington 1989), vol. II, 627. New York:IEEE. [Mins69] Minsky, M.L. and S.A. Papert, "Perceptron," Cambridge: MIT Press. Partially reprinted in Anderson and Rosenberg, 1988. [Morg91J D.P. Morgan and c.L. Scofield, Neural Networks and Speech Processing. Kluwer Academic Publishers, 1991. [Moze89] M. C. Mozer and P. Smolensky, "Skeletonization: A technique for trimming the fat from a network via relevance assessment,", In Advances in Neural Information Processing (1), D.S. Touretzky, Ed. (Denver 1988), 1989, pp. 107-115. [Mura91] K.Murase, YMatsunaga and Y.Nakade: "A Back-propagation Algorithm with Automatically Determines the Number of Association Units", Proc. of International Joint Conference on Neural Networks(IJCNN-SINGAPORE), I, p.783-788, 1991. [pe1i93J M. Pelillo and A. M. Fanelli, "A method of pruning layered feed-forward neural networks," in Proc IWANN`93, Sitges, Barcelona, June 1993 (Berlin: Springer-Verlag). [Reed93] R. Reed, "Pruning A1goritluns-A Survey", in IEEE Transactions On Neural Network, Vo14, NO.5, September 1993, pp. 740-747. [Rume86] Rumelhart, D.E., James McClelland, "Parallel Distributed Processing, ", Vol 1 and 2, MIT Press, Cambridge, MA, 1986. [Siet88] Sietsma., 1. and R.lF. Dow (1988), "Neural Net Pruning-Why and How." In IEEE International Conference on Neural Networks (San Diego 1988), Vol. 1,325-333. New York:IEEE. [Tsai93] Tsaih, R., "The Softening Learning Procedure." In Mathematical and Computer Modeling, Vol. 18, No.8, 61-64. [Tsai93] Tsaih, R., "The Softening Learning Procedure for The Layered Feedforward Networks With Multiple Output nodes". Proceeding of Intemational Joint Conference on Neural Networks, Nagoya, I, 593-596. [Wata93] Watanabe E. and Shimizu H., "Algorithm for Pruning Hidden Nodes in Multi Layerd Neural Network for binary StimulusClassification Problem", In Proceedings of 1993 Intemational Joint Conference on Neural Networks, pp 327-330, 1993 . [Weig91] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-elimination with application to forcasting," in Advances in Neural Information Processing (3), R. Lippmann, J. Moody, and D. Touretzky, Eds, 1991, pp. 875-882. [Werb90] P. J. Werbos, "Backpropagation Through Time: What It Does and How to Do It", In Proceedings of the IEEE, Vol 78, No.1 0, October 1990, pp . 1550-1560. [Werb74] P. Werbos. IIBeyond Regression :New Tools for Prediction and the Analysis in the Behavioral Sciences." Ph.D. thesis, Harvard, Cambridge, MA, August 1974. zh_TW