dc.contributor.advisor | 李陽明 | zh_TW |
dc.contributor.advisor | Lee, Young Ming | en_US |
dc.contributor.author (作者) | 劉麗珍 | zh_TW |
dc.contributor.author (作者) | Liu, Li Jean | en_US |
dc.creator (作者) | 劉麗珍 | zh_TW |
dc.creator (作者) | Liu, Li Jean | en_US |
dc.date (日期) | 1994 | en_US |
dc.date.accessioned | 29-四月-2016 16:32:21 (UTC+8) | - |
dc.date.available | 29-四月-2016 16:32:21 (UTC+8) | - |
dc.date.issued (上傳時間) | 29-四月-2016 16:32:21 (UTC+8) | - |
dc.identifier (其他 識別碼) | B2002003904 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/88736 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description (描述) | 81155007 | zh_TW |
dc.description.abstract (摘要) | 組合數學的主要目的之一就是要用簡單容易的方法來解決問題。在本篇論文中我們試著用組合的方法去證明以下的等式 | zh_TW |
dc.description.abstract (摘要) | One of the main objective of combinatorial mathematics is to find an easy and simple way to solve problems. In this paper,we try to use a combinatorial method to prove the identity | en_US |
dc.description.tableofcontents | 中文摘要 Abstract Chapter 1 THE ORIGIN IF THE PROBLEM-----1 1.1 Ordinary generating functions-----1 Chapter 2 A COMBINATORIAL PROOF-----5 2.1 The basic idea-----5 2.2 The lattice path-----6 2.3 Setting up a bijective mapping-----7 2.4 Setting up the iverse mapping-----13 Chapter 3 THE MAIN PROOF-----18 3.1 The preliminaries-----18 3.2 The inductive proof-----26 Chapter 4 CONCLUSION-----31 Reference-----32 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002003904 | en_US |
dc.subject (關鍵詞) | 對射 | zh_TW |
dc.subject (關鍵詞) | bijective | en_US |
dc.title (題名) | 一個組合等式的一對一證明 | zh_TW |
dc.title (題名) | A Bijective Proof of a Combinatorial Identity | en_US |
dc.type (資料類型) | thesis | en_US |