Publications-Theses
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | 動態徑向基底函數網路與混沌預測 Dynamical Radial Basis Function Networks and Chaotic Forecasting |
Creator | 蔡炎龍 Tsai, Yen Lung |
Contributor | 劉文卿 Liu, Wen Tsin 蔡炎龍 Tsai, Yen Lung |
Key Words | 神經網路 徑向基底函數 函數逼近 混沌預測 neural networks radial basis functions chaotic forecasting |
Date | 1993 |
Date Issued | 29-Apr-2016 16:32:37 (UTC+8) |
Summary | 在許多的研究和應用之中都需要預測的技巧。本論文中, 我們建構了一個 The forecasting technique is important for many researches and |
參考文獻 | [1] Bishop, C.(1991). Improving the generalization properties of radial basis function neural networks. Neural Computation, 3, 579-589. [2] Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321-355. [3] Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least suares learning algorithm for radial basis function networks. IEEE Transcations on Neural Networks, 2, 302-309 [4] Friedberg, S. H., Insel, A. J., & Spence, L. E. (1989). Linear Algebra. Englewood Cliffs, N.j.: Prentice-Hall, Inc. [5] Hartman, E. J., Keeler, J. D., & Kowalski, J. M. (1990). Layered neural networks with Gaussian Hidden units as universal approximations. Neural Computation, 2, 210-219. [6] Jones, R. D., Lee, Y. C., Barnes, C. W., Flake, G. W., Lee, K., Lewis, P.S., & Qian, S. (1990). Function approximation and time series prediction with neural networks. Proceedings of International Joint Confernence on Neural Networks, 1, 649-665. [7] Lapedes, A. S., & Farber, R. M. (1987). Nonlinear signal processing using neural networks: prediction and system modeling. Technical Report. Los Alamos National Laboratory, Los Alamos, New Mexico. [8] May, R. M. And Sugihara, G. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344, 734-741. [9] Moody J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1, 281-294. [10] Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., & Hummels, D. M. (1992). On the training of radial basis function classifiers, Neural Networks. 5,595-603. [11] Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3, 246-257. [12] Qian, S., Lee, Y. C., Jones, R. D., Barnes, C. W., & Lee, K. (1990). Function approximation with an orthogonal basis net. Technical Report. Los Alamos National Laboratory, Los Alamos, New Mexico. [13] Rasband, S. N. (1990). Chaotic Dynamics of Nonlinear System. New York: John Wiley & Sons, Inc. [14] Rice, J. R. (1964). The Approximation of Functions. Reading, Mass: Addison-Wesley Pubblish Company, Inc. [15] Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, Mass.: MIT Press. [16] Weigend, A. S., Huberman, B. A., & Rumelhart, D. E. (1990). Predicting the future: a connectionist approach. International Journal of Neural Systems, 1, 193-209. |
Description | 碩士 國立政治大學 應用數學系 80155012 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#B2002004242 |
Type | thesis |
dc.contributor.advisor | 劉文卿 | zh_TW |
dc.contributor.advisor | Liu, Wen Tsin | en_US |
dc.contributor.author (Authors) | 蔡炎龍 | zh_TW |
dc.contributor.author (Authors) | Tsai, Yen Lung | en_US |
dc.creator (作者) | 蔡炎龍 | zh_TW |
dc.creator (作者) | Tsai, Yen Lung | en_US |
dc.date (日期) | 1993 | en_US |
dc.date.accessioned | 29-Apr-2016 16:32:37 (UTC+8) | - |
dc.date.available | 29-Apr-2016 16:32:37 (UTC+8) | - |
dc.date.issued (上傳時間) | 29-Apr-2016 16:32:37 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002004242 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/88744 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description (描述) | 80155012 | zh_TW |
dc.description.abstract (摘要) | 在許多的研究和應用之中都需要預測的技巧。本論文中, 我們建構了一個 | zh_TW |
dc.description.abstract (摘要) | The forecasting technique is important for many researches and | en_US |
dc.description.tableofcontents | Abstract i List of Figures iv List of Tables v Section 1 introduction 1 1.1 Background.................................................................................................................1 1.2 DRBF Networks...........................................................................................................2 1.3 The Structure of This Paper.........................................................................................3 Section 2 Previous Research 4 2.1 The Approximation of Functions.................................................................................4 2.2 Feedforward Networks.................................................................................................5 2.3 Back Propagation Networks.........................................................................................6 2.4 Forecasting....................................................................................................................7 Section 3 Dynamical Radial Basis Function Networks 9 3.1 RBF Networks..............................................................................................................9 3.2 DRBF Networks.........................................................................................................12 3.3 Changing Widths........................................................................................................14 Section 4 Experiments 16 4.1 f(x)=4x(1-x)................................................................................................................17 4.2 f(x)=sin(-πx).............................................................................................................19 4.3 AR(1)..........................................................................................................................21 4.4 MA(1).........................................................................................................................23 4.5 Sunspots......................................................................................................................25 4.6 Discussion...................................................................................................................27 Section 5 Conclusion 28 Reference 29 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002004242 | en_US |
dc.subject (關鍵詞) | 神經網路 | zh_TW |
dc.subject (關鍵詞) | 徑向基底函數 | zh_TW |
dc.subject (關鍵詞) | 函數逼近 | zh_TW |
dc.subject (關鍵詞) | 混沌預測 | zh_TW |
dc.subject (關鍵詞) | neural networks | en_US |
dc.subject (關鍵詞) | radial basis functions | en_US |
dc.subject (關鍵詞) | chaotic forecasting | en_US |
dc.title (題名) | 動態徑向基底函數網路與混沌預測 | zh_TW |
dc.title (題名) | Dynamical Radial Basis Function Networks and Chaotic Forecasting | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | [1] Bishop, C.(1991). Improving the generalization properties of radial basis function neural networks. Neural Computation, 3, 579-589. [2] Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321-355. [3] Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least suares learning algorithm for radial basis function networks. IEEE Transcations on Neural Networks, 2, 302-309 [4] Friedberg, S. H., Insel, A. J., & Spence, L. E. (1989). Linear Algebra. Englewood Cliffs, N.j.: Prentice-Hall, Inc. [5] Hartman, E. J., Keeler, J. D., & Kowalski, J. M. (1990). Layered neural networks with Gaussian Hidden units as universal approximations. Neural Computation, 2, 210-219. [6] Jones, R. D., Lee, Y. C., Barnes, C. W., Flake, G. W., Lee, K., Lewis, P.S., & Qian, S. (1990). Function approximation and time series prediction with neural networks. Proceedings of International Joint Confernence on Neural Networks, 1, 649-665. [7] Lapedes, A. S., & Farber, R. M. (1987). Nonlinear signal processing using neural networks: prediction and system modeling. Technical Report. Los Alamos National Laboratory, Los Alamos, New Mexico. [8] May, R. M. And Sugihara, G. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344, 734-741. [9] Moody J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1, 281-294. [10] Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., & Hummels, D. M. (1992). On the training of radial basis function classifiers, Neural Networks. 5,595-603. [11] Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3, 246-257. [12] Qian, S., Lee, Y. C., Jones, R. D., Barnes, C. W., & Lee, K. (1990). Function approximation with an orthogonal basis net. Technical Report. Los Alamos National Laboratory, Los Alamos, New Mexico. [13] Rasband, S. N. (1990). Chaotic Dynamics of Nonlinear System. New York: John Wiley & Sons, Inc. [14] Rice, J. R. (1964). The Approximation of Functions. Reading, Mass: Addison-Wesley Pubblish Company, Inc. [15] Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, Mass.: MIT Press. [16] Weigend, A. S., Huberman, B. A., & Rumelhart, D. E. (1990). Predicting the future: a connectionist approach. International Journal of Neural Systems, 1, 193-209. | zh_TW |