Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 有關chow-robbins的"公正"遊戲問題之探討
ON THE CHOW-ROBINS "FAIR" GAMES PROBLEM
作者 楊玲惠
貢獻者 林光賢
楊玲惠
日期 1990
1989
上傳時間 3-May-2016 14:17:35 (UTC+8)
摘要 令Sn=Σj =1najYj ,其{Yn,n≧1}是具有相同分布的獨立隨機變數序列,且{an , n≧1}為正值實數數列。考慮一連串的比賽遊戲,以anYn表示參與者於第n次比賽時,所獲得的”利益”;且假設欲參與第n次比賽遊戲時,須預先支付賭注mn。在本文中,我們證明:若比賽遊戲採用的是”Generalized Petersburg Games”,即p{Y1=q-k}=pqk-1,0<p=1-q<1,k≧1;且若正值實數數列{an,n≧1}滿足
Let Sn=?_(j=1)^( n)??a_j Y_j ?, n≧1,where{Yn, n≧1}are i.i.d. r.v.’s and{an,n≧1}are real numbers. Interpreting an Yn as a player’s winnings from the n-th game,a natural question is whether there is an entrance fee mn to the n-th game such that Sn / Mn → 1 in pr. where Mn= ?_(j=1)^( n)?mj.The Purpose of this paper is to study a generalization of the classical Petersburg game for the weighted i..i.d case. That is, for a sequence{ an,n≧1} of real numbers and i.i.d.r.v.’s { Yn, n≧1}with P{ Y1=q-k}=pqk-1, 0<p=1-q<1, k≧1,find conditions on {an,n≧1}which ensure the existence of constants {Mn, n≧1} for which Sn / Mn-1 in pr. obtains. It is shown that when an≧0, An=1,2,3,.....
參考文獻 [ 1] A. Adler and A. Rosalsky , On the Chow-Robbins " fair “ games problem, Bulletin of the institute of mathematics academia sinica . , 17 (1989) ) 211-227
     [ 2 ] Y. S. Chow and H. Robbins, On sums of independent random variables with Infinite moments and “fair “ games) Proc. Nat. Acad. Sci. U.S.A.,47(1961) , 330-.335 .
     [ 3 ] Y. S. Chow and H. Teicher , Probability Theory : Independence , Interchangeability , Mrartingale , Springer-Verlag, New York, 1988 .
     [ 4] W. Feller 1 Note on the law of large numbers and “ fair" games, Ann.Math. Statist. , 16 (1945) , 301-304 .
     [ 5] W. Feller. , A limit theorem for random variables with infinite moments, Amer. J. Math. , 68 (1946) ,257-262 .
     [ 6] W. Feller. , An Intruductin to Probability Theory and Its Applications, Vol I, 3rded. , John Wiley, New York, 1968 .
     [ 7 ] W. Feller. , An Intruductin to Probability Theory and Its Applications, Vol II, 2nded. , John Wiley, New York, 1971 .
     [ 8] B. Jamison, S. Orey and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete ,14 (1965) , 40--44 .
     [ 9] R. A. Maller, Relative stability and the strong law of large numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete , 43 (1978) , 141-148 .
     [10J B. A. Rogozin , Relatively stable Walks , Theor. Probability Appl. , 21(1976) ,375--379 .
描述 碩士
國立政治大學
應用數學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005452
資料類型 thesis
dc.contributor.advisor 林光賢zh_TW
dc.contributor.author (Authors) 楊玲惠zh_TW
dc.creator (作者) 楊玲惠zh_TW
dc.date (日期) 1990en_US
dc.date (日期) 1989en_US
dc.date.accessioned 3-May-2016 14:17:35 (UTC+8)-
dc.date.available 3-May-2016 14:17:35 (UTC+8)-
dc.date.issued (上傳時間) 3-May-2016 14:17:35 (UTC+8)-
dc.identifier (Other Identifiers) B2002005452en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/90187-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description.abstract (摘要) 令Sn=Σj =1najYj ,其{Yn,n≧1}是具有相同分布的獨立隨機變數序列,且{an , n≧1}為正值實數數列。考慮一連串的比賽遊戲,以anYn表示參與者於第n次比賽時,所獲得的”利益”;且假設欲參與第n次比賽遊戲時,須預先支付賭注mn。在本文中,我們證明:若比賽遊戲採用的是”Generalized Petersburg Games”,即p{Y1=q-k}=pqk-1,0<p=1-q<1,k≧1;且若正值實數數列{an,n≧1}滿足zh_TW
dc.description.abstract (摘要) Let Sn=?_(j=1)^( n)??a_j Y_j ?, n≧1,where{Yn, n≧1}are i.i.d. r.v.’s and{an,n≧1}are real numbers. Interpreting an Yn as a player’s winnings from the n-th game,a natural question is whether there is an entrance fee mn to the n-th game such that Sn / Mn → 1 in pr. where Mn= ?_(j=1)^( n)?mj.The Purpose of this paper is to study a generalization of the classical Petersburg game for the weighted i..i.d case. That is, for a sequence{ an,n≧1} of real numbers and i.i.d.r.v.’s { Yn, n≧1}with P{ Y1=q-k}=pqk-1, 0<p=1-q<1, k≧1,find conditions on {an,n≧1}which ensure the existence of constants {Mn, n≧1} for which Sn / Mn-1 in pr. obtains. It is shown that when an≧0, An=1,2,3,.....en_US
dc.description.tableofcontents Ⅰ Introduction ................1-3
     Ⅱ Results...............4-15
     References...............16-17
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005452en_US
dc.title (題名) 有關chow-robbins的"公正"遊戲問題之探討zh_TW
dc.title (題名) ON THE CHOW-ROBINS "FAIR" GAMES PROBLEMen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [ 1] A. Adler and A. Rosalsky , On the Chow-Robbins " fair “ games problem, Bulletin of the institute of mathematics academia sinica . , 17 (1989) ) 211-227
     [ 2 ] Y. S. Chow and H. Robbins, On sums of independent random variables with Infinite moments and “fair “ games) Proc. Nat. Acad. Sci. U.S.A.,47(1961) , 330-.335 .
     [ 3 ] Y. S. Chow and H. Teicher , Probability Theory : Independence , Interchangeability , Mrartingale , Springer-Verlag, New York, 1988 .
     [ 4] W. Feller 1 Note on the law of large numbers and “ fair" games, Ann.Math. Statist. , 16 (1945) , 301-304 .
     [ 5] W. Feller. , A limit theorem for random variables with infinite moments, Amer. J. Math. , 68 (1946) ,257-262 .
     [ 6] W. Feller. , An Intruductin to Probability Theory and Its Applications, Vol I, 3rded. , John Wiley, New York, 1968 .
     [ 7 ] W. Feller. , An Intruductin to Probability Theory and Its Applications, Vol II, 2nded. , John Wiley, New York, 1971 .
     [ 8] B. Jamison, S. Orey and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete ,14 (1965) , 40--44 .
     [ 9] R. A. Maller, Relative stability and the strong law of large numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete , 43 (1978) , 141-148 .
     [10J B. A. Rogozin , Relatively stable Walks , Theor. Probability Appl. , 21(1976) ,375--379 .
zh_TW