Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 三對角QR算則之位移策略
Shifts of origin for the real symmetric tridiagonal QR algorithm
作者 黃建發
貢獻者 王太林
黃建發
日期 1990
1989
上傳時間 3-May-2016 14:17:43 (UTC+8)
摘要 QR 算則是目前常用的一種計算矩陣特徵值的方法,而適當的運用位移可增加比算則的收斂速度,本文探討五種己知的位移,並提出二種新位移.我們首先對各種位移做摘要性的探討及其收斂性的研究,其次舉出一些例子以說明各位移的利弊及其相互間的比較,並就下列三類方式對位移做排行:
參考文獻 [Da] Bernard Danloy (1986). "Improved Strategies of Shift for the QL Algorithm and for Inverse Iteration in the Symmetric Case,"Department of Pure and Applied Mathematics Chemin du Cyclotron,2, 1348 Louvain-la-Neuve Belgium, unpublished paper.
     [DT] T. J. Dekker and J. F. Traub (1971). "The Shifted QR Algorithm for Hermitian Matrices," 1. Linear Algebra Appl. 4, p137--54.
     [HP] W. Hoffman and B. N. Parlett (1978). "A New Proof of Global Convergence for the Tridiagonal QL Algorithm," SIAM. J. Numer.Anal. 15, p929-37.
     [JZ] Jiang Erxiong and Zhang Zhenyue (1985). "A New shift of the QL Algorithm for Irreducible Symmetric Tridiagonal Matrices," J. Linear Algebra Appl. 65, p261-72.
     [Pa] B. N. Parlett (1980). The Symmetric Eigenvalue Problem, PrenticeHall, Englewood Cliffs, N.J.
     [Sa] Youcef Saad (1974). "Shifts of Origin for the QR Algorithm,"Toronto: Pro. IFIP Congress.
     [Wa] Tai-Lin Wang (1988). Unpublished manuscripts.
     [Wi1] J. H. Wilkinson (1965). The Algebraic Eigenvalue Problem,Clarendon Press, Oxford.
     [Wi2] J. H. Wilkinson (1968). "Global Convergence of Tridiagonal QR Algorithm with Origin Shifts," 1. Linear Algebra Appl. I, p409-20.
描述 碩士
國立政治大學
應用數學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005455
資料類型 thesis
dc.contributor.advisor 王太林zh_TW
dc.contributor.author (Authors) 黃建發zh_TW
dc.creator (作者) 黃建發zh_TW
dc.date (日期) 1990en_US
dc.date (日期) 1989en_US
dc.date.accessioned 3-May-2016 14:17:43 (UTC+8)-
dc.date.available 3-May-2016 14:17:43 (UTC+8)-
dc.date.issued (上傳時間) 3-May-2016 14:17:43 (UTC+8)-
dc.identifier (Other Identifiers) B2002005455en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/90190-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description.abstract (摘要) QR 算則是目前常用的一種計算矩陣特徵值的方法,而適當的運用位移可增加比算則的收斂速度,本文探討五種己知的位移,並提出二種新位移.我們首先對各種位移做摘要性的探討及其收斂性的研究,其次舉出一些例子以說明各位移的利弊及其相互間的比較,並就下列三類方式對位移做排行:zh_TW
dc.description.tableofcontents 0 Introduction.....................................1
     1 Preliminary
     1.1 The QR Algorithm............................2
     1.2 The Importance of Shifts...........................3
     2 Shift Strategies ...........................5
     3 Analysis
     3.1 The Optimal Shift...........................11
     3.2 The Modified Optimal Shift...........................16
     3.3 The Third-order Shift ...........................20
     4 NumericaI Examples
     4.1 The Mixed Shift...........................24
     4.2 Comparison of Shifts ...........................25
     4.3 Properties of Convergence ...........................27
     4.4 Estimate of Eigenvalues ...........................28
     5 Conclusions ...........................31
     Appendix ...........................33
     References...........................41
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005455en_US
dc.title (題名) 三對角QR算則之位移策略zh_TW
dc.title (題名) Shifts of origin for the real symmetric tridiagonal QR algorithmen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [Da] Bernard Danloy (1986). "Improved Strategies of Shift for the QL Algorithm and for Inverse Iteration in the Symmetric Case,"Department of Pure and Applied Mathematics Chemin du Cyclotron,2, 1348 Louvain-la-Neuve Belgium, unpublished paper.
     [DT] T. J. Dekker and J. F. Traub (1971). "The Shifted QR Algorithm for Hermitian Matrices," 1. Linear Algebra Appl. 4, p137--54.
     [HP] W. Hoffman and B. N. Parlett (1978). "A New Proof of Global Convergence for the Tridiagonal QL Algorithm," SIAM. J. Numer.Anal. 15, p929-37.
     [JZ] Jiang Erxiong and Zhang Zhenyue (1985). "A New shift of the QL Algorithm for Irreducible Symmetric Tridiagonal Matrices," J. Linear Algebra Appl. 65, p261-72.
     [Pa] B. N. Parlett (1980). The Symmetric Eigenvalue Problem, PrenticeHall, Englewood Cliffs, N.J.
     [Sa] Youcef Saad (1974). "Shifts of Origin for the QR Algorithm,"Toronto: Pro. IFIP Congress.
     [Wa] Tai-Lin Wang (1988). Unpublished manuscripts.
     [Wi1] J. H. Wilkinson (1965). The Algebraic Eigenvalue Problem,Clarendon Press, Oxford.
     [Wi2] J. H. Wilkinson (1968). "Global Convergence of Tridiagonal QR Algorithm with Origin Shifts," 1. Linear Algebra Appl. I, p409-20.
zh_TW