Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 縮基法初始值問題之數值研究
Numerical studies of reduced basis methos for initial value problems作者 陳揚敏 貢獻者 林美佑
陳揚敏關鍵詞 縮基法,投影法
Reduced Basis Method, Projection日期 1990
1989上傳時間 3-May-2016 14:17:47 (UTC+8) 摘要 縮基法(RBM) 是對參數化的曲線求逼近解的一個方法,基本上乃使用投影法將解曲線投射到解空間的一子空間中,如此一來,可將原問題轉換成一較小的系統,並經由數值計算出小系統的解,來求得大系統的一逼近解。在本篇論文中主要的乃探討RBM在常微分方程組初始值問題上的應用,並發展一套含有誤差控制的演算法。
The reduced basis method(RBM) is a scheme for approximating parametric solution curves. The basic technique of RBM is projection. By applying the method, we can find an approximate solution of the original system which satisfies a system of smaller size. In this paper, we mainly concern the applications of RBM for ODE initial value problems and develop an algorithm which contains a set of error controls.參考文獻 [1] N. N. Abdelmalek, Roundoff Error Analysis for Gram-Schmidt Method and Solution of Linear Least Squares Problems, BIT, 11(1971), pp.945-968. [2] B. O. Almroth, P. Stern and F. A. Brogan, Automatic Choice of Global Shape Functions in Structural Analysis, AIAA J., 16(1978), pp. 525-528. [3] E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme, Computing, 6(1970), pp. 61-71. [4] J. P. Fink and W. C. Rheinboldt, On the Discretization Error of Parametrized Nonlinear Equations, SIAM J. Numer. Anal., 20(1989),pp. 792-746. [5] J. P. Fink and W. C. Rheinboldt, On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations,Z. Angew. Math.Mech., 69(1989), pp. 21-28. [6] J . P. Fink and W. C. Rheinboldt, Local Error Estimates for Parametrized Nonlinear Equations, SIAM J. Numer. Anal., 22(1985),pp. 729-795. [7] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 1971, Prentice-Hall inc., Englewood Cliffs, New Jersey. [8] G. H. Golub and C. F. Van Loan, Matrix Computations, 1989. [9] M. K. Gordon and L. F. Shampine, Computer Solution of Ordinary Differential Equations, The Initial Value Problem, ~974, W. H. Freeman and Company, San Francisco. [10] J. D. Lambert, Computational Methods in Ordinary Differential Equations, 1989 J. W. Arrowsmith Ltd. Bristol. [11] M. Lin Lee, Estimation of the Error in the Reduced Basis Method Solution of Differential Algebraic Equation System, SIAM J. Numer. Anal., to appear. [12] M. Lin Lee, The Reduced Basis Method for Differential Algebraic Equation System, Technical Report ICMA-85-85, Inst. for Compo Math. And Appl., University of Pittsburgh, Pittsburgh, PA, July, 1985. [13] N. A. Nagy, Model Representation of Geometrically Nonlinear Behavior by the Finite Element Method, Computers and Structures,10(1977), pp. 689-688. [14] A. K. Noor and J. M. Peters, Reduced Basis Technique for Nonlinear Analysis of Structures, AIAA J., 18(1980), pp. 455-462. [15] A. K. Noor, C. M. Andersen and J. M. Peters, Reduced Basis Technique for Collapse of Shells, AIAA J., 19(1981), pp. 999-997. [16] T. A. Porsching, Estimation of the Error in the Reduced Basis Method Solution of Nonlinear Equations, Math. Comp., 45(1985), pp. 487-496. [17] T. A. Porsching and M. Lin Lee, The Reduced Basis Method For Initial Value Problems, SIAM J. Numer. Anal., 24(1987), pp. 1277-1287. [18] J. R. Rice, Experiments on Gram-Schmidt Orthogonalization, Math. Compo 20(1966), pp. 925-928. [19] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 1980,Springer, New York, Heidelberg, Berlin. [20] G. W. Steward, Introduction to Matrix Computation, 1979, Academic Press, New York and London. [21] G. W. Steward, Perturbation Bounds for the QR Factorization of a Matrix, SIAM J, Numer. Anal., 14(1977), pp. 509-518. [22] J. S. Vandergraft, Introduction to Numerical Computation, 1989,Automated Sciences Group, Inc., Silver Spring, Maryland. [23] R. E. Williamson, Introduction to Differential Equations, ODE, PDE and Series. 描述 碩士
國立政治大學
應用數學系資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005457 資料類型 thesis dc.contributor.advisor 林美佑 zh_TW dc.contributor.author (Authors) 陳揚敏 zh_TW dc.creator (作者) 陳揚敏 zh_TW dc.date (日期) 1990 en_US dc.date (日期) 1989 en_US dc.date.accessioned 3-May-2016 14:17:47 (UTC+8) - dc.date.available 3-May-2016 14:17:47 (UTC+8) - dc.date.issued (上傳時間) 3-May-2016 14:17:47 (UTC+8) - dc.identifier (Other Identifiers) B2002005457 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/90192 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用數學系 zh_TW dc.description.abstract (摘要) 縮基法(RBM) 是對參數化的曲線求逼近解的一個方法,基本上乃使用投影法將解曲線投射到解空間的一子空間中,如此一來,可將原問題轉換成一較小的系統,並經由數值計算出小系統的解,來求得大系統的一逼近解。在本篇論文中主要的乃探討RBM在常微分方程組初始值問題上的應用,並發展一套含有誤差控制的演算法。 zh_TW dc.description.abstract (摘要) The reduced basis method(RBM) is a scheme for approximating parametric solution curves. The basic technique of RBM is projection. By applying the method, we can find an approximate solution of the original system which satisfies a system of smaller size. In this paper, we mainly concern the applications of RBM for ODE initial value problems and develop an algorithm which contains a set of error controls. en_US dc.description.tableofcontents 1. Introduction ......................... 1 2. Reduced Basis Approximation . ......................... 2 3. Ordinary Differential Equation Solver ......................... 3 3.1 Operation Count of GS-solver ......................... 8 4. Implementing RBM.......................... 9 4.1 Selecting Subspaces ......................... 10 4.2 Algorithm of Gram-Schmidt .................................... 14 4.3 Roundoff Error......................... 16 4.4 Order Control ......................... 22 4.5 Operation Count of Overhead of RBM......................... 22 5. Error Control ......................... 24 5.1 A posteriori Error Estimate......................... 24 5.2 A priori Error Estimate......................... 25 6. Numerical Studies ......................... 26 References......................... 30 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005457 en_US dc.subject (關鍵詞) 縮基法,投影法 zh_TW dc.subject (關鍵詞) Reduced Basis Method, Projection en_US dc.title (題名) 縮基法初始值問題之數值研究 zh_TW dc.title (題名) Numerical studies of reduced basis methos for initial value problems en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] N. N. Abdelmalek, Roundoff Error Analysis for Gram-Schmidt Method and Solution of Linear Least Squares Problems, BIT, 11(1971), pp.945-968. [2] B. O. Almroth, P. Stern and F. A. Brogan, Automatic Choice of Global Shape Functions in Structural Analysis, AIAA J., 16(1978), pp. 525-528. [3] E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme, Computing, 6(1970), pp. 61-71. [4] J. P. Fink and W. C. Rheinboldt, On the Discretization Error of Parametrized Nonlinear Equations, SIAM J. Numer. Anal., 20(1989),pp. 792-746. [5] J. P. Fink and W. C. Rheinboldt, On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations,Z. Angew. Math.Mech., 69(1989), pp. 21-28. [6] J . P. Fink and W. C. Rheinboldt, Local Error Estimates for Parametrized Nonlinear Equations, SIAM J. Numer. Anal., 22(1985),pp. 729-795. [7] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 1971, Prentice-Hall inc., Englewood Cliffs, New Jersey. [8] G. H. Golub and C. F. Van Loan, Matrix Computations, 1989. [9] M. K. Gordon and L. F. Shampine, Computer Solution of Ordinary Differential Equations, The Initial Value Problem, ~974, W. H. Freeman and Company, San Francisco. [10] J. D. Lambert, Computational Methods in Ordinary Differential Equations, 1989 J. W. Arrowsmith Ltd. Bristol. [11] M. Lin Lee, Estimation of the Error in the Reduced Basis Method Solution of Differential Algebraic Equation System, SIAM J. Numer. Anal., to appear. [12] M. Lin Lee, The Reduced Basis Method for Differential Algebraic Equation System, Technical Report ICMA-85-85, Inst. for Compo Math. And Appl., University of Pittsburgh, Pittsburgh, PA, July, 1985. [13] N. A. Nagy, Model Representation of Geometrically Nonlinear Behavior by the Finite Element Method, Computers and Structures,10(1977), pp. 689-688. [14] A. K. Noor and J. M. Peters, Reduced Basis Technique for Nonlinear Analysis of Structures, AIAA J., 18(1980), pp. 455-462. [15] A. K. Noor, C. M. Andersen and J. M. Peters, Reduced Basis Technique for Collapse of Shells, AIAA J., 19(1981), pp. 999-997. [16] T. A. Porsching, Estimation of the Error in the Reduced Basis Method Solution of Nonlinear Equations, Math. Comp., 45(1985), pp. 487-496. [17] T. A. Porsching and M. Lin Lee, The Reduced Basis Method For Initial Value Problems, SIAM J. Numer. Anal., 24(1987), pp. 1277-1287. [18] J. R. Rice, Experiments on Gram-Schmidt Orthogonalization, Math. Compo 20(1966), pp. 925-928. [19] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 1980,Springer, New York, Heidelberg, Berlin. [20] G. W. Steward, Introduction to Matrix Computation, 1979, Academic Press, New York and London. [21] G. W. Steward, Perturbation Bounds for the QR Factorization of a Matrix, SIAM J, Numer. Anal., 14(1977), pp. 509-518. [22] J. S. Vandergraft, Introduction to Numerical Computation, 1989,Automated Sciences Group, Inc., Silver Spring, Maryland. [23] R. E. Williamson, Introduction to Differential Equations, ODE, PDE and Series. zh_TW