Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 無母數統計方法在變異數分析上的應用
作者 王琮胤
貢獻者 劉明路
王琮胤
日期 1989
上傳時間 4-May-2016 14:24:09 (UTC+8)
參考文獻 [1] Adichie,J.N (1967) "Estimates of regression coefficients based on ranks
     tests." A.M.S., 38 ,894-904.
     [2] Bauer, D.P. (1961) "Contructing confidence sets using rank statistics." J.A.S.A., 67, 687-690.
     [3] Gibbon, F.A. (1971) Nonparametric Statistical Inference. New York McGraw-Hill.
     [4] Hajek, J. & Sidak. Z. (1967) Theory of Rank Tests. New York: Academic press
     [5] Hann, E. J. (1956) "The asymptotic powers of certain tests based on multiple correlations." Journal of the Royal Statistical Society, B18, 227-233.
     [6] Hettmansperger, T.P. & Mckean. J.W. (1977) " A robust alternative based on ranks to least squares in analysising the linear model." Technometrics,275-284.
     [7] Hodges, J. L. , Jr. and Lehmann, E. L. (l963.l .. Estimates of location based on rank tests" A.M.S., 34, 598-611
     [8] Jaeckel L.A. (972) "Estimating regression coefficients by minimizing the dispersion of residuals." A.M.S., 43, 1449-1458
     [9] Johnson. R.A. & Wichern D.W. Applied Multivariate Satistical Analysis.
     [10] Jureckova. J. (1969) "Asymptotic linearity of a rank statistic in regression parameter." A.M.S., 40, 1889-1900.
     [11] Jureckova. J. (1971a) "Honparametric estimate of resgresssion coefficients" A.M.S., 42, 1328-1338
     [12] Jureckova, J. (1971b) "Asymptot ic independence of rannk test statistic for testing symmetry on regression" Sankhya, A33, 1-18
     [13] Mckean, J.W. & Hettmansperger, T.P. (976) "Tests of hypothesis in general linear model based on ranks" Communication in statistic, A5(8), 693-709
     [14] Montgomery,D.C. (1984) Design & Analysis of Experiment (2nd ed). New York: John Willy.
     [15] Schrader,R.M. & Mckean,J.W. "Robust Analysis of Variance." Communication in statistic, A6, 879-894.
     [16] Searle, S.R. (1971) Linear model. New York: Jhon Willey
     [17] Sen, P.K. (1966) "On a distribuyion-free method of estimating asymptocic efficifncy of a class of nonparametric tests." A.M.S., 37 ,1759-1770.
     [18] Van Eden, C. (1972) "An analogue for signed rank statistics, of Jreckova`s asymptotic linearity theorem for rank statistics" A.M.S. 43, 791-802.
描述 碩士
國立政治大學
統計學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005730
資料類型 thesis
dc.contributor.advisor 劉明路zh_TW
dc.contributor.author (Authors) 王琮胤zh_TW
dc.creator (作者) 王琮胤zh_TW
dc.date (日期) 1989en_US
dc.date.accessioned 4-May-2016 14:24:09 (UTC+8)-
dc.date.available 4-May-2016 14:24:09 (UTC+8)-
dc.date.issued (上傳時間) 4-May-2016 14:24:09 (UTC+8)-
dc.identifier (Other Identifiers) B2002005730en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/90496-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description.tableofcontents 目錄
     第一章 緒言……1
     第一節 研究動機與目地……1
     第二節 本文大綱……5
     第二章 迴歸係數的估計及近似分配……6
     第一節 Jureckova 的迴歸係數估計式及近似分配……6
     第二節 Jaeckel 的的迴歸係數估計式及近似分配……15
     第三章 線性等級統計量在線性模式的理論基礎……23
     第一節 檢定統計量及其近似分配……23
     第二節 為γ的一致估計式……32
     第三節 近似相對有效性……38
     第四章 結論……44
     參考資料……47
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005730en_US
dc.title (題名) 無母數統計方法在變異數分析上的應用zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Adichie,J.N (1967) "Estimates of regression coefficients based on ranks
     tests." A.M.S., 38 ,894-904.
     [2] Bauer, D.P. (1961) "Contructing confidence sets using rank statistics." J.A.S.A., 67, 687-690.
     [3] Gibbon, F.A. (1971) Nonparametric Statistical Inference. New York McGraw-Hill.
     [4] Hajek, J. & Sidak. Z. (1967) Theory of Rank Tests. New York: Academic press
     [5] Hann, E. J. (1956) "The asymptotic powers of certain tests based on multiple correlations." Journal of the Royal Statistical Society, B18, 227-233.
     [6] Hettmansperger, T.P. & Mckean. J.W. (1977) " A robust alternative based on ranks to least squares in analysising the linear model." Technometrics,275-284.
     [7] Hodges, J. L. , Jr. and Lehmann, E. L. (l963.l .. Estimates of location based on rank tests" A.M.S., 34, 598-611
     [8] Jaeckel L.A. (972) "Estimating regression coefficients by minimizing the dispersion of residuals." A.M.S., 43, 1449-1458
     [9] Johnson. R.A. & Wichern D.W. Applied Multivariate Satistical Analysis.
     [10] Jureckova. J. (1969) "Asymptotic linearity of a rank statistic in regression parameter." A.M.S., 40, 1889-1900.
     [11] Jureckova. J. (1971a) "Honparametric estimate of resgresssion coefficients" A.M.S., 42, 1328-1338
     [12] Jureckova, J. (1971b) "Asymptot ic independence of rannk test statistic for testing symmetry on regression" Sankhya, A33, 1-18
     [13] Mckean, J.W. & Hettmansperger, T.P. (976) "Tests of hypothesis in general linear model based on ranks" Communication in statistic, A5(8), 693-709
     [14] Montgomery,D.C. (1984) Design & Analysis of Experiment (2nd ed). New York: John Willy.
     [15] Schrader,R.M. & Mckean,J.W. "Robust Analysis of Variance." Communication in statistic, A6, 879-894.
     [16] Searle, S.R. (1971) Linear model. New York: Jhon Willey
     [17] Sen, P.K. (1966) "On a distribuyion-free method of estimating asymptocic efficifncy of a class of nonparametric tests." A.M.S., 37 ,1759-1770.
     [18] Van Eden, C. (1972) "An analogue for signed rank statistics, of Jreckova`s asymptotic linearity theorem for rank statistics" A.M.S. 43, 791-802.
zh_TW