Publications-Theses
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | 無母數統計方法在變異數分析上的應用 |
Creator | 王琮胤 |
Contributor | 劉明路 王琮胤 |
Date | 1989 |
Date Issued | 4-May-2016 14:24:09 (UTC+8) |
參考文獻 | [1] Adichie,J.N (1967) "Estimates of regression coefficients based on ranks tests." A.M.S., 38 ,894-904. [2] Bauer, D.P. (1961) "Contructing confidence sets using rank statistics." J.A.S.A., 67, 687-690. [3] Gibbon, F.A. (1971) Nonparametric Statistical Inference. New York McGraw-Hill. [4] Hajek, J. & Sidak. Z. (1967) Theory of Rank Tests. New York: Academic press [5] Hann, E. J. (1956) "The asymptotic powers of certain tests based on multiple correlations." Journal of the Royal Statistical Society, B18, 227-233. [6] Hettmansperger, T.P. & Mckean. J.W. (1977) " A robust alternative based on ranks to least squares in analysising the linear model." Technometrics,275-284. [7] Hodges, J. L. , Jr. and Lehmann, E. L. (l963.l .. Estimates of location based on rank tests" A.M.S., 34, 598-611 [8] Jaeckel L.A. (972) "Estimating regression coefficients by minimizing the dispersion of residuals." A.M.S., 43, 1449-1458 [9] Johnson. R.A. & Wichern D.W. Applied Multivariate Satistical Analysis. [10] Jureckova. J. (1969) "Asymptotic linearity of a rank statistic in regression parameter." A.M.S., 40, 1889-1900. [11] Jureckova. J. (1971a) "Honparametric estimate of resgresssion coefficients" A.M.S., 42, 1328-1338 [12] Jureckova, J. (1971b) "Asymptot ic independence of rannk test statistic for testing symmetry on regression" Sankhya, A33, 1-18 [13] Mckean, J.W. & Hettmansperger, T.P. (976) "Tests of hypothesis in general linear model based on ranks" Communication in statistic, A5(8), 693-709 [14] Montgomery,D.C. (1984) Design & Analysis of Experiment (2nd ed). New York: John Willy. [15] Schrader,R.M. & Mckean,J.W. "Robust Analysis of Variance." Communication in statistic, A6, 879-894. [16] Searle, S.R. (1971) Linear model. New York: Jhon Willey [17] Sen, P.K. (1966) "On a distribuyion-free method of estimating asymptocic efficifncy of a class of nonparametric tests." A.M.S., 37 ,1759-1770. [18] Van Eden, C. (1972) "An analogue for signed rank statistics, of Jreckova`s asymptotic linearity theorem for rank statistics" A.M.S. 43, 791-802. |
Description | 碩士 國立政治大學 統計學系 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#B2002005730 |
Type | thesis |
dc.contributor.advisor | 劉明路 | zh_TW |
dc.contributor.author (Authors) | 王琮胤 | zh_TW |
dc.creator (作者) | 王琮胤 | zh_TW |
dc.date (日期) | 1989 | en_US |
dc.date.accessioned | 4-May-2016 14:24:09 (UTC+8) | - |
dc.date.available | 4-May-2016 14:24:09 (UTC+8) | - |
dc.date.issued (上傳時間) | 4-May-2016 14:24:09 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002005730 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/90496 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description.tableofcontents | 目錄 第一章 緒言……1 第一節 研究動機與目地……1 第二節 本文大綱……5 第二章 迴歸係數的估計及近似分配……6 第一節 Jureckova 的迴歸係數估計式及近似分配……6 第二節 Jaeckel 的的迴歸係數估計式及近似分配……15 第三章 線性等級統計量在線性模式的理論基礎……23 第一節 檢定統計量及其近似分配……23 第二節 為γ的一致估計式……32 第三節 近似相對有效性……38 第四章 結論……44 參考資料……47 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002005730 | en_US |
dc.title (題名) | 無母數統計方法在變異數分析上的應用 | zh_TW |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | [1] Adichie,J.N (1967) "Estimates of regression coefficients based on ranks tests." A.M.S., 38 ,894-904. [2] Bauer, D.P. (1961) "Contructing confidence sets using rank statistics." J.A.S.A., 67, 687-690. [3] Gibbon, F.A. (1971) Nonparametric Statistical Inference. New York McGraw-Hill. [4] Hajek, J. & Sidak. Z. (1967) Theory of Rank Tests. New York: Academic press [5] Hann, E. J. (1956) "The asymptotic powers of certain tests based on multiple correlations." Journal of the Royal Statistical Society, B18, 227-233. [6] Hettmansperger, T.P. & Mckean. J.W. (1977) " A robust alternative based on ranks to least squares in analysising the linear model." Technometrics,275-284. [7] Hodges, J. L. , Jr. and Lehmann, E. L. (l963.l .. Estimates of location based on rank tests" A.M.S., 34, 598-611 [8] Jaeckel L.A. (972) "Estimating regression coefficients by minimizing the dispersion of residuals." A.M.S., 43, 1449-1458 [9] Johnson. R.A. & Wichern D.W. Applied Multivariate Satistical Analysis. [10] Jureckova. J. (1969) "Asymptotic linearity of a rank statistic in regression parameter." A.M.S., 40, 1889-1900. [11] Jureckova. J. (1971a) "Honparametric estimate of resgresssion coefficients" A.M.S., 42, 1328-1338 [12] Jureckova, J. (1971b) "Asymptot ic independence of rannk test statistic for testing symmetry on regression" Sankhya, A33, 1-18 [13] Mckean, J.W. & Hettmansperger, T.P. (976) "Tests of hypothesis in general linear model based on ranks" Communication in statistic, A5(8), 693-709 [14] Montgomery,D.C. (1984) Design & Analysis of Experiment (2nd ed). New York: John Willy. [15] Schrader,R.M. & Mckean,J.W. "Robust Analysis of Variance." Communication in statistic, A6, 879-894. [16] Searle, S.R. (1971) Linear model. New York: Jhon Willey [17] Sen, P.K. (1966) "On a distribuyion-free method of estimating asymptocic efficifncy of a class of nonparametric tests." A.M.S., 37 ,1759-1770. [18] Van Eden, C. (1972) "An analogue for signed rank statistics, of Jreckova`s asymptotic linearity theorem for rank statistics" A.M.S. 43, 791-802. | zh_TW |