Publications-Theses
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | 聚類分析在迴歸模型中選擇影響資料之研究 |
Creator | 林貞純 |
Contributor | 黃登源 林貞純 |
Date | 1989 |
Date Issued | 4-May-2016 14:24:12 (UTC+8) |
參考文獻 | [1] Andrews, D. F., and Pregibon, D. (1978): Finding the Outliers That Matter, Journal of the Royal Statistical Society, Ser. B, 40. pp.85-93. [2] Aroian, L. A. t1942): The Relationship of Fisher`s Z-Distribution to Student`s T Distribution (Abstract). Annals of Mathematical Statistics 13. PP. 451-452. [3] Belsley. D. A., Kuh. E., and Welsch. R. E. (1980): Regression Diagnostics: Identifying Influential Data and Sources of Collinearity New York:John Wiley. [4] Brownlee, K. A., (1965): Statistical Theory and Methodology in Science and Engineering, Wiley. (2nd ed.) [5] Cook, R. D ., (1977): Detection of Influential Observations in Linear Regression. Technometrics, 19, PP. 15-18. [6] Cook. R. D., (1979): Influential Observations in Linear Regression, Journal of the American Statistical Association, 74, pp. 169-174. [7] Cook. R. D., and Weisberg, s. (1980): Characterizations of an Empirical Influence Function for Detecting Influential Cases in Regression. Technometrics. 22. Pp. 495-508. [8] Cook, R. D., and Weisberg, S. (1982): Residuals and Influence in Regression, Hew York: Chapman and Hall. PP. 135. [9] Daniel, C., and Wood, F. S. (1980): Fitting Equations to Data, (2nd ed.) , New York: John Wiley. pp. 60-82. [10] Duda, R. 0., and Hart, P. E. (1973): Pattern Classification and Scene Analysis, New York: Wiley. PP. 239-243. [11] Ling, R. F. (1972): On the Theory and Construction of K-Clusters. Computer Journal. 15. PP. 326-332. [12] Ling. R. F. (1973): A Computer - Generated Aid for Cluster Analysis. Communications of the Association for Computing Machinery, 16. PP. 355-361. [13] Milligan, G. W., and Cooper. H. C. (1985): An Examination of Procedures for Determining the Humber of Cluster in A Data Set. Psychometrika. 50. PP. 159-179. [14] Welsch. R. E. (1982): Influence Functions and Regression Diagnostics, in Modern Data Analysis. eds. R. Launer and A. Siegel. New York: Academic Press. |
Description | 碩士 國立政治大學 統計學系 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#B2002005731 |
Type | thesis |
dc.contributor.advisor | 黃登源 | zh_TW |
dc.contributor.author (Authors) | 林貞純 | zh_TW |
dc.creator (作者) | 林貞純 | zh_TW |
dc.date (日期) | 1989 | en_US |
dc.date.accessioned | 4-May-2016 14:24:12 (UTC+8) | - |
dc.date.available | 4-May-2016 14:24:12 (UTC+8) | - |
dc.date.issued (上傳時間) | 4-May-2016 14:24:12 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002005731 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/90497 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description.tableofcontents | 目錄 第一章 緒論……1 第一節 研究動機與目的……1 第二節 本文結構……3 第二章 迴歸模型中辨認影響資料之基本理論……5 第一節 迴歸模型中影響資料的定義……5 第二節 辨認影響資料組之導引……8 第三章 帽子矩陣(hat matrix)與影響測度量的基本觀念……10 第一節 帽子矩陣(H)的應用……10 第二節 兩種影響測度量的介紹……13 第三節 修正的帽子矩陣(H*)之應用……21 註解……28 第四章 聚類分析在迴歸模型中選擇影響資料組之理論……45 第一節 K聚類法與單一連鎖法……45 第二節 H*矩陣的聚類演算與黑色陰影圖……48 第五章 影響資料組之決定……50 註解……54 第六章 舉例……56 第一節 前言……56 第二節 資料來源與描述 第三節 分析結果提報與討論……58 第七章 結論……68 附錄……69 參考文獻……87 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002005731 | en_US |
dc.title (題名) | 聚類分析在迴歸模型中選擇影響資料之研究 | zh_TW |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | [1] Andrews, D. F., and Pregibon, D. (1978): Finding the Outliers That Matter, Journal of the Royal Statistical Society, Ser. B, 40. pp.85-93. [2] Aroian, L. A. t1942): The Relationship of Fisher`s Z-Distribution to Student`s T Distribution (Abstract). Annals of Mathematical Statistics 13. PP. 451-452. [3] Belsley. D. A., Kuh. E., and Welsch. R. E. (1980): Regression Diagnostics: Identifying Influential Data and Sources of Collinearity New York:John Wiley. [4] Brownlee, K. A., (1965): Statistical Theory and Methodology in Science and Engineering, Wiley. (2nd ed.) [5] Cook, R. D ., (1977): Detection of Influential Observations in Linear Regression. Technometrics, 19, PP. 15-18. [6] Cook. R. D., (1979): Influential Observations in Linear Regression, Journal of the American Statistical Association, 74, pp. 169-174. [7] Cook. R. D., and Weisberg, s. (1980): Characterizations of an Empirical Influence Function for Detecting Influential Cases in Regression. Technometrics. 22. Pp. 495-508. [8] Cook, R. D., and Weisberg, S. (1982): Residuals and Influence in Regression, Hew York: Chapman and Hall. PP. 135. [9] Daniel, C., and Wood, F. S. (1980): Fitting Equations to Data, (2nd ed.) , New York: John Wiley. pp. 60-82. [10] Duda, R. 0., and Hart, P. E. (1973): Pattern Classification and Scene Analysis, New York: Wiley. PP. 239-243. [11] Ling, R. F. (1972): On the Theory and Construction of K-Clusters. Computer Journal. 15. PP. 326-332. [12] Ling. R. F. (1973): A Computer - Generated Aid for Cluster Analysis. Communications of the Association for Computing Machinery, 16. PP. 355-361. [13] Milligan, G. W., and Cooper. H. C. (1985): An Examination of Procedures for Determining the Humber of Cluster in A Data Set. Psychometrika. 50. PP. 159-179. [14] Welsch. R. E. (1982): Influence Functions and Regression Diagnostics, in Modern Data Analysis. eds. R. Launer and A. Siegel. New York: Academic Press. | zh_TW |