dc.contributor.advisor | 蔡隆義 | zh_TW |
dc.contributor.author (Authors) | 余世偉 | zh_TW |
dc.creator (作者) | 余世偉 | zh_TW |
dc.date (日期) | 1989 | en_US |
dc.date.accessioned | 4-May-2016 14:31:28 (UTC+8) | - |
dc.date.available | 4-May-2016 14:31:28 (UTC+8) | - |
dc.date.issued (上傳時間) | 4-May-2016 14:31:28 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002005821 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/90577 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系 | zh_TW |
dc.description.abstract (摘要) | 論文援要內容: 在本篇論文中,我們主要是探討有邊界值的二次積分微分方程式的解的存在性及唯一性的問題。在Lakshmikanthan和Khavanin的,二次積分微分方程式及單調法 (The method of mixed monotony and second order integro-differential system,Appl. Anal. 28(1988),199-206[4])中,他們利用到混合單調法的技巧:將不具有任何單調性質的函數擴充到一混合單調函數(亦即此函數對某些變數是單調非遞減,而對某些變數是單調非遞增),然後利用其上解及下解(upper and lower solution)來生成兩個單調數列,而此二單調數列具有同時均勻的收斂到原方程式的解的性質,而完成其存在性,其唯一性則是利用最大法則(maximum principle),而完成了他們對二次積分微分方程式的解的探討。 在上述中,我們認為作者給予擴充函數的性質太強了,所以我們將條件放寬,允許它不是混合單調函數,而另外給了較弱的限制條件,此時我們的証明方法有了改變,我們用到了拓樸上的定點定理(fixed point theorem):若T是一區間映到相同區間的緊緻運算子(compact operator),則存在一點X使得T(X)=Xo於是解便可得到,其唯一性亦是利用最大法則得到。 接著,我們必須確定我們所使用的擴充函數確實存在,所以我們給了一些關於擴充函數存在的充分條件。於是,在這些條件下我們就可以得到唯一的解。 本篇論文是就不同邊界值的二次積分微分方程式的解來作探討,第一章是討論一般邊界值的問題,第二章是就週期邊界值的問題來作類似的探討。 | zh_TW |
dc.description.tableofcontents | Contents Chapter 1 Boundary value problem of second order integro-differential system Section 1.Introduction………l Section 2.Preliminaries………3 Section 3.Main result………5 Section 4.Sufficient conditions………13 Section 5.Example………17 Chapter 2 Periodic boundary value problem of second order integro-differential system Section 1.Preliminary………19 Section 2.Main result………20 Section 3.Sufficient conditions………24 References………26 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002005821 | en_US |
dc.title (題名) | 非線性積分微分方程之研討 | zh_TW |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | References [1] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag,New York (1983). [2] K. Yosida, Functional Analysis, Springer-Verlag, New York (1980). [3] L. Y. Tasi, On the solvability of integral-differential operators, Chinese J. Math., 11(1983), 75-84. [4] M. Khavanin and V. Lakshmikantham. The method of mixed monotony and second order integro-differential systems. Appl. Anal. 28(1987), 199-206. [5] R. Kannan and V. Lakshmikantham, Existence of periodic solutions of nonlinear boundary value problems and the method of upper and lower solutions, Appl. Anal. 17(1984), 103-113. | zh_TW |