Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 在有輔助資料時最強抽樣策略的探討 作者 崔紀揚 貢獻者 郎冰瑩
崔紀揚日期 1986 上傳時間 5-May-2016 15:55:10 (UTC+8) 參考文獻 REFERENCES: 1. Brewer, K.R.W. (1979), "A Class of Robust Sampling Design for Large-scale Survey." JASA, 74, PP.911-15. 2. Brewer, K.R.W., and Hanif, M. (1982), Sampling with Unequal Probability, NEW YORK: Springer-Verlag. 3. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1977), Foundations of Inference in Survey Sampling, NEW YORK: Wiley. 4. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1976), "Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Population Sampling." Biometrika, 63, PP. 615–20. 5. Cochran, W.G. (1977), Sampling techniques, 3rd ed., NEW YORK: Wiley. 6. Godambe, V.P. (1969), "Admissibility and Bayes Estimation in Sampling Finite Populations—V." Ann. Math. Stat., 40, PP. 672–76. 7. Godambe, V.P. (1982), "Estimation in Survey Sampling: Robustness and Optimality,” JASA, 77, PP. 199-203. 8. Holt, D. (1975), "A Generalization of Balanced Sampling." Sankhy?, Ser. C, 37, PP. 199-203. 9. Mukhopadhyay, P. (1977), "Robust Estimators of Finite Population Total under Certain Linear Regression Models." Sankhy?, Ser. C, 39, PP. 71-87. 10. Rao, C.R. (1973), Linear Statistical Inference and Its application, NEW YORK: Wiley 11. Royall, R.M. (1970), "On Finite Population Sampling Theory under Certain Linear Regression Model." Biometrika, 57, No. 2, PP. 377-87. 12. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅠ." JASA, 68, PP.880-89. 13. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅡ: Stratification on a Size Variable." JASA, 68, PP.890-93. 14. Royall, R.M., and Pfeffermann, D. (1982), "Balanced Samples and Robust Bayesian Inference in Finite Population Sampling." Biometrika, 69, PP. 401–409. 15. Royall, R.M. (1976), "The Linear Least-Square Prediction Apporach to Two-Stage Sampling." JASA, 71, PP. 657-64 16. Rao, J.N.K., Hartely, H.O., and Cochran, W.G. (1962), "On a Simple Procedure of Unequal Probability Sampling Without Replacement." JRSS, Ser. B, 24, PP. 482–91. 17. Scott, A.J., Brewer, K.R.W., and Ho, W.H. (1978), "Finite Population Sampling and Robust Estimation." JASA, 73, PP. 359–61. 18. Scott, A.J., and Smith, T.M.F. (1974), "linear Super-Population in Survey Sampling." Sankhy?, Ser. C, 36, PP. 143-46. 19. Scott, A.J. (1975), "On Admissibility and Uniform Admissibility in Finite Population Sampling." Ann. Math. Stat., 46, PP. 489–91. 20. Searle, S.R. (1982), Matrix Algebra Useful for Statistics, 巨擎書局 21. Sukhatme, P.V. (1954), Sampling Theory of Surveys with Applications, Iowa State College Press. 22. Tallis, G.M. (1978), “Note on Robust Estimation in Finite Population.” Sankhy?, Ser. C, PP. 136-38 23. Tam, S.M. (1984), “Optimal Estimation in Survey Sampling under a Regression Superpopulation Model.” Biometrika, 71, PP. 645-47. 24. Yates, F. (1960), Sampling Methods for Census and Survey, 3rd ed., London: griffin 25. Zacks, S. and Soloman, H. (1970), “Optimal Design of Sampling from Finite Population.” JASA, 65, PP. 653-78. 描述 碩士
國立政治大學
統計學系資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002006687 資料類型 thesis dc.contributor.advisor 郎冰瑩 zh_TW dc.contributor.author (Authors) 崔紀揚 zh_TW dc.creator (作者) 崔紀揚 zh_TW dc.date (日期) 1986 en_US dc.date.accessioned 5-May-2016 15:55:10 (UTC+8) - dc.date.available 5-May-2016 15:55:10 (UTC+8) - dc.date.issued (上傳時間) 5-May-2016 15:55:10 (UTC+8) - dc.identifier (Other Identifiers) B2002006687 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/91719 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description.tableofcontents 目錄 第一章 緒論………1 第一節 動機與目的………1 第二節 基本模型………3 第三節 最適抽樣策略與最?抽樣策略………4 第四節 本文結構………5 第二章 相關名詞的定義………7 第一節 基本定義………7 第二節 抽樣設計的一般性質與常用的抽樣設計………8 第三節 常用的估計式………10 第三章 最?抽樣策略………12 第一節 在超母體模型ξ(0,1;ν(χ))下的最適抽樣策略………12 第二節 假設模型為ξ(0,1;χ)的最?抽樣策略………21 第三節 採分層抽樣法以改進(Pbl;T?(0,1;χ)的效率………40 第四節 考慮估計式為T?(0,1;ν(χ))的情形………46 第四章 實證研究………50 第五章 結論與建議………56 參考書目 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002006687 en_US dc.title (題名) 在有輔助資料時最強抽樣策略的探討 zh_TW dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) REFERENCES: 1. Brewer, K.R.W. (1979), "A Class of Robust Sampling Design for Large-scale Survey." JASA, 74, PP.911-15. 2. Brewer, K.R.W., and Hanif, M. (1982), Sampling with Unequal Probability, NEW YORK: Springer-Verlag. 3. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1977), Foundations of Inference in Survey Sampling, NEW YORK: Wiley. 4. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1976), "Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Population Sampling." Biometrika, 63, PP. 615–20. 5. Cochran, W.G. (1977), Sampling techniques, 3rd ed., NEW YORK: Wiley. 6. Godambe, V.P. (1969), "Admissibility and Bayes Estimation in Sampling Finite Populations—V." Ann. Math. Stat., 40, PP. 672–76. 7. Godambe, V.P. (1982), "Estimation in Survey Sampling: Robustness and Optimality,” JASA, 77, PP. 199-203. 8. Holt, D. (1975), "A Generalization of Balanced Sampling." Sankhy?, Ser. C, 37, PP. 199-203. 9. Mukhopadhyay, P. (1977), "Robust Estimators of Finite Population Total under Certain Linear Regression Models." Sankhy?, Ser. C, 39, PP. 71-87. 10. Rao, C.R. (1973), Linear Statistical Inference and Its application, NEW YORK: Wiley 11. Royall, R.M. (1970), "On Finite Population Sampling Theory under Certain Linear Regression Model." Biometrika, 57, No. 2, PP. 377-87. 12. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅠ." JASA, 68, PP.880-89. 13. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅡ: Stratification on a Size Variable." JASA, 68, PP.890-93. 14. Royall, R.M., and Pfeffermann, D. (1982), "Balanced Samples and Robust Bayesian Inference in Finite Population Sampling." Biometrika, 69, PP. 401–409. 15. Royall, R.M. (1976), "The Linear Least-Square Prediction Apporach to Two-Stage Sampling." JASA, 71, PP. 657-64 16. Rao, J.N.K., Hartely, H.O., and Cochran, W.G. (1962), "On a Simple Procedure of Unequal Probability Sampling Without Replacement." JRSS, Ser. B, 24, PP. 482–91. 17. Scott, A.J., Brewer, K.R.W., and Ho, W.H. (1978), "Finite Population Sampling and Robust Estimation." JASA, 73, PP. 359–61. 18. Scott, A.J., and Smith, T.M.F. (1974), "linear Super-Population in Survey Sampling." Sankhy?, Ser. C, 36, PP. 143-46. 19. Scott, A.J. (1975), "On Admissibility and Uniform Admissibility in Finite Population Sampling." Ann. Math. Stat., 46, PP. 489–91. 20. Searle, S.R. (1982), Matrix Algebra Useful for Statistics, 巨擎書局 21. Sukhatme, P.V. (1954), Sampling Theory of Surveys with Applications, Iowa State College Press. 22. Tallis, G.M. (1978), “Note on Robust Estimation in Finite Population.” Sankhy?, Ser. C, PP. 136-38 23. Tam, S.M. (1984), “Optimal Estimation in Survey Sampling under a Regression Superpopulation Model.” Biometrika, 71, PP. 645-47. 24. Yates, F. (1960), Sampling Methods for Census and Survey, 3rd ed., London: griffin 25. Zacks, S. and Soloman, H. (1970), “Optimal Design of Sampling from Finite Population.” JASA, 65, PP. 653-78. zh_TW