Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 在有輔助資料時最強抽樣策略的探討
作者 崔紀揚
貢獻者 郎冰瑩
崔紀揚
日期 1986
上傳時間 5-May-2016 15:55:10 (UTC+8)
參考文獻 REFERENCES:
     1. Brewer, K.R.W. (1979), "A Class of Robust Sampling Design for Large-scale Survey." JASA, 74, PP.911-15.
     2. Brewer, K.R.W., and Hanif, M. (1982), Sampling with Unequal Probability, NEW YORK: Springer-Verlag.
     3. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1977), Foundations of Inference in Survey Sampling, NEW YORK: Wiley.
     4. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1976), "Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Population Sampling." Biometrika, 63, PP. 615–20.
     5. Cochran, W.G. (1977), Sampling techniques, 3rd ed., NEW YORK: Wiley.
     6. Godambe, V.P. (1969), "Admissibility and Bayes Estimation in Sampling Finite Populations—V." Ann. Math. Stat., 40, PP. 672–76.
     7. Godambe, V.P. (1982), "Estimation in Survey Sampling: Robustness and Optimality,” JASA, 77, PP. 199-203.
     8. Holt, D. (1975), "A Generalization of Balanced Sampling." Sankhy?, Ser. C, 37, PP. 199-203.
     9. Mukhopadhyay, P. (1977), "Robust Estimators of Finite Population Total under Certain Linear Regression Models." Sankhy?, Ser. C, 39, PP. 71-87.
     10. Rao, C.R. (1973), Linear Statistical Inference and Its application, NEW YORK: Wiley
     11. Royall, R.M. (1970), "On Finite Population Sampling Theory under Certain Linear Regression Model." Biometrika, 57, No. 2, PP. 377-87.
     12. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅠ." JASA, 68, PP.880-89.
     13. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅡ: Stratification on a Size Variable." JASA, 68, PP.890-93.
     14. Royall, R.M., and Pfeffermann, D. (1982), "Balanced Samples and Robust Bayesian Inference in Finite Population Sampling." Biometrika, 69, PP. 401–409.
     15. Royall, R.M. (1976), "The Linear Least-Square Prediction Apporach to Two-Stage Sampling." JASA, 71, PP. 657-64
     16. Rao, J.N.K., Hartely, H.O., and Cochran, W.G. (1962), "On a Simple Procedure of Unequal Probability Sampling Without Replacement." JRSS, Ser. B, 24, PP. 482–91.
     17. Scott, A.J., Brewer, K.R.W., and Ho, W.H. (1978), "Finite Population Sampling and Robust Estimation." JASA, 73, PP. 359–61.
     18. Scott, A.J., and Smith, T.M.F. (1974), "linear Super-Population in Survey Sampling." Sankhy?, Ser. C, 36, PP. 143-46.
     19. Scott, A.J. (1975), "On Admissibility and Uniform Admissibility in Finite Population Sampling." Ann. Math. Stat., 46, PP. 489–91.
     20. Searle, S.R. (1982), Matrix Algebra Useful for Statistics, 巨擎書局
     21. Sukhatme, P.V. (1954), Sampling Theory of Surveys with Applications, Iowa State College Press.
     22. Tallis, G.M. (1978), “Note on Robust Estimation in Finite Population.” Sankhy?, Ser. C, PP. 136-38
     23. Tam, S.M. (1984), “Optimal Estimation in Survey Sampling under a Regression Superpopulation Model.” Biometrika, 71, PP. 645-47.
     24. Yates, F. (1960), Sampling Methods for Census and Survey, 3rd ed., London: griffin
     25. Zacks, S. and Soloman, H. (1970), “Optimal Design of Sampling from Finite Population.” JASA, 65, PP. 653-78.
描述 碩士
國立政治大學
統計學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002006687
資料類型 thesis
dc.contributor.advisor 郎冰瑩zh_TW
dc.contributor.author (Authors) 崔紀揚zh_TW
dc.creator (作者) 崔紀揚zh_TW
dc.date (日期) 1986en_US
dc.date.accessioned 5-May-2016 15:55:10 (UTC+8)-
dc.date.available 5-May-2016 15:55:10 (UTC+8)-
dc.date.issued (上傳時間) 5-May-2016 15:55:10 (UTC+8)-
dc.identifier (Other Identifiers) B2002006687en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/91719-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description.tableofcontents 目錄
     
     第一章 緒論………1
     第一節 動機與目的………1
     第二節 基本模型………3
     第三節 最適抽樣策略與最?抽樣策略………4
     第四節 本文結構………5
     第二章 相關名詞的定義………7
     第一節 基本定義………7
     第二節 抽樣設計的一般性質與常用的抽樣設計………8
     第三節 常用的估計式………10
     第三章 最?抽樣策略………12
     第一節 在超母體模型ξ(0,1;ν(χ))下的最適抽樣策略………12
     第二節 假設模型為ξ(0,1;χ)的最?抽樣策略………21
     第三節 採分層抽樣法以改進(Pbl;T?(0,1;χ)的效率………40
     第四節 考慮估計式為T?(0,1;ν(χ))的情形………46
     第四章 實證研究………50
     第五章 結論與建議………56
     參考書目
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002006687en_US
dc.title (題名) 在有輔助資料時最強抽樣策略的探討zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) REFERENCES:
     1. Brewer, K.R.W. (1979), "A Class of Robust Sampling Design for Large-scale Survey." JASA, 74, PP.911-15.
     2. Brewer, K.R.W., and Hanif, M. (1982), Sampling with Unequal Probability, NEW YORK: Springer-Verlag.
     3. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1977), Foundations of Inference in Survey Sampling, NEW YORK: Wiley.
     4. Cassel, C.M., Sarndal, C. E., and Wretman, J. H. (1976), "Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Population Sampling." Biometrika, 63, PP. 615–20.
     5. Cochran, W.G. (1977), Sampling techniques, 3rd ed., NEW YORK: Wiley.
     6. Godambe, V.P. (1969), "Admissibility and Bayes Estimation in Sampling Finite Populations—V." Ann. Math. Stat., 40, PP. 672–76.
     7. Godambe, V.P. (1982), "Estimation in Survey Sampling: Robustness and Optimality,” JASA, 77, PP. 199-203.
     8. Holt, D. (1975), "A Generalization of Balanced Sampling." Sankhy?, Ser. C, 37, PP. 199-203.
     9. Mukhopadhyay, P. (1977), "Robust Estimators of Finite Population Total under Certain Linear Regression Models." Sankhy?, Ser. C, 39, PP. 71-87.
     10. Rao, C.R. (1973), Linear Statistical Inference and Its application, NEW YORK: Wiley
     11. Royall, R.M. (1970), "On Finite Population Sampling Theory under Certain Linear Regression Model." Biometrika, 57, No. 2, PP. 377-87.
     12. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅠ." JASA, 68, PP.880-89.
     13. Royall, R.M., and Herson, J. (1973), "Robust Estimation in Finite PopulationsⅡ: Stratification on a Size Variable." JASA, 68, PP.890-93.
     14. Royall, R.M., and Pfeffermann, D. (1982), "Balanced Samples and Robust Bayesian Inference in Finite Population Sampling." Biometrika, 69, PP. 401–409.
     15. Royall, R.M. (1976), "The Linear Least-Square Prediction Apporach to Two-Stage Sampling." JASA, 71, PP. 657-64
     16. Rao, J.N.K., Hartely, H.O., and Cochran, W.G. (1962), "On a Simple Procedure of Unequal Probability Sampling Without Replacement." JRSS, Ser. B, 24, PP. 482–91.
     17. Scott, A.J., Brewer, K.R.W., and Ho, W.H. (1978), "Finite Population Sampling and Robust Estimation." JASA, 73, PP. 359–61.
     18. Scott, A.J., and Smith, T.M.F. (1974), "linear Super-Population in Survey Sampling." Sankhy?, Ser. C, 36, PP. 143-46.
     19. Scott, A.J. (1975), "On Admissibility and Uniform Admissibility in Finite Population Sampling." Ann. Math. Stat., 46, PP. 489–91.
     20. Searle, S.R. (1982), Matrix Algebra Useful for Statistics, 巨擎書局
     21. Sukhatme, P.V. (1954), Sampling Theory of Surveys with Applications, Iowa State College Press.
     22. Tallis, G.M. (1978), “Note on Robust Estimation in Finite Population.” Sankhy?, Ser. C, PP. 136-38
     23. Tam, S.M. (1984), “Optimal Estimation in Survey Sampling under a Regression Superpopulation Model.” Biometrika, 71, PP. 645-47.
     24. Yates, F. (1960), Sampling Methods for Census and Survey, 3rd ed., London: griffin
     25. Zacks, S. and Soloman, H. (1970), “Optimal Design of Sampling from Finite Population.” JASA, 65, PP. 653-78.
zh_TW