學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 無線網狀網路中干擾感知之拓樸控制的研究
Interference-Aware Topology Control in Wireless Mesh Network
作者 方任瑋
Fang, Ren Wei
貢獻者 張宏慶
Jang, Hung Chin
方任瑋
Fang, Ren Wei
關鍵詞 拓樸控制
三角化演算法
平面掃描
線段交錯
干擾感知
標準差
Topology Control
Triangulation algorithm
Plane Sweep
Line intersection
Interference-aware
Delaunay Triangulation
Voronoi Diagram
Standard deviation
日期 2007
上傳時間 6-May-2016 16:43:57 (UTC+8)
摘要 在無線網狀網路(Wireless Mesh Network)中,每個節點須幫助相鄰節點轉送資料及提供使用者網路存取,例如WLAN(IEEE 802.11s)、WMAN(IEEE 802.16)等,皆可利用多跳接方式將資料轉送至通訊閘道器(Gateway)。在無線網狀網路中,常利用密集佈建的方式來解決通訊死角的問題。當網路節點的密度增加時,無線訊號的干擾也會增強,並且各節點的效能會顯著下降。
     在本研究中,將利用幾何學概念,解決網路干擾問題,並提出拓樸重建演算法來重建路徑,使網路干擾達到最小化。我們試著最小化節點與節點間的干擾,以提升整體無線網狀網路效能。我們將網路問題轉換成幾何問題,並定義在幾何圖形中線段交錯問題,之後驗證在幾何圖形中是否有線段交錯的現象發生。若發生線段交錯時,則將此線段從幾何圖形中移除,並且利用三角化演算法將此區域線段重新規劃,使相鄰節點間的干擾最小。當網路拓樸建立完成後,我們利用標準差公式將干擾較大的連線移除,使得網路效能提升。上述測試線段交錯及三角化多邊形演算法可在時間複雜度O(n log n)內找到干擾最小的解。最後,我們將利用網路模擬器(Network Simulator)驗證所提出的方法是否能達到預期的系統效能指標。
In wireless mesh networks, such as WLAN (IEEE 802.11s), WMAN (IEEE 802.16), etc., each node should forward packets of neighboring nodes toward gateway using multi-hop routing mechanism. In wireless mesh network, as the density of network nodes increases, the RF interference will increase and the throughput of each node will drop rapidly.
     In our research, we use the geometry to resolve the RF interference problem by rebuilding network topology. We try to minimize the interference between neighboring nodes and improve the throughput in wireless mesh network. We transform the network topology problem into geometry problem and define the line intersection problem in geometric graph, then check path intersection in the geometric graph. If line intersection occurs in the graph, we remove the intersection line from the graph and re-plan the region by triangulation algorithm. When the network topology is built up, we use a standard deviation formula to improve network performance by removing longer links. The line intersection algorithm and triangulation algorithm, both of time complexity O(n log n), are used to find the minimal interference solution. At the end of our research, we use network simulator to verify if the proposed methods can help to meet all those performance expectations.
Chapter 1 Introduction 1
     1.1 Background 1
     Chapter 2 Related Work 3
     Chapter 3 Proposed Method 9
     3.1 Definition 9
     3.1.1 Line Intersection Problem 10
     3.2 Research Mechanisms 12
     3.2.1 Plane Sweep Algorithm 12
     3.2.2 Voronoi Diagram Algorithm 16
     3.2.3 Delaunay Triangulation Algorithm 20
     3.3. Research Steps 26
     3.3.1 Related Formulae 27
     3.3.2 Node Deployment and Positioning 28
     3.3.3 Broadcast Own Location 28
     3.3.4 Transform Network Problem into Geometry Problem 29
     3.3.5 Check Line Intersection 29
     3.3.6 Find Neighbor Nodes 30
     3.3.7 Triangulate Topology 30
     3.3.8 Change Transmission Power 35
     3.3.9 Node Addition 35
     3.3.10 Node Deletion 36
     3.3.11 Modify Delaunay Triangulation 36
     3.3.11.1 Use Standard Deviation formula 37
     Chapter 4 Simulation and Analysis 41
     4.1 Simulation Topology and Assumptions 41
     4.2 Scenario and Result 42
     4.3 Summary 52
     Chapter 5 Conclusion and Future Work 53
     Chapter 6 References 55
參考文獻 [1] Ian F. Akyildiz, Xudong Wang, Weilin Wang, “Wireless Mesh Networks: a survey”,Computer Networks and ISDN System, Vol.47, Issue 4, pp. 445-487, 2005.
     [2] P. Gupta and P.R. Kumar, “The Capacity of Wireless Network”, IEEE Transactions on Information Theory 46(2), Mar. 2000.
     [3] V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks”, Proc. of IEEE INFOCOM, pp. 1405-1413, 1997.
     [4] A. Nasipuri, R. Castaneda, and S. R. Das, “Performance of Multipath Routing for On-Demand Protocols in Ad Hoc Networks”, ACM/Kluwer Mobile Networks and Applications (MONET), Journal, Vol. 6, No. 4, pp. 339-349, 2001.
     [5] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-Resilient, Energy-Efficient Multipath Routing in Wireless Sensor Networks”, Mobile Computing and Communications Review, Vol. 5, No. 4, pp. 11-25 2001.
     [6] K. Jain, J. Padhye, V. N. Padmanabhan and L. Qiu, “Impact of Interference on Multi-Hop Wireless Network Performance”, 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands, 471-487.
     [7] P. H. Hsiao and H. T. Kung, “Constructing Multiple Wireless Meshes in the Same Region with Beam-Crossing Grids”, IEEE Wireless Communications and Networking Conference (WCNC), March 2005.
     [8] M.Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. “Does Topology Control Reduce Interference?” Proceedings of the 5th ACM Int. Symposium on Mobile Ad-hoc Networking and Computing (MobiHoc), pp. 9-19, 2004.
     [9] Li X Y, Calinescu G, Wan P J. “Distributed Construction of a Planar Spanner and Routing for Ad Hoc Wireless Networks”, IEEE INFOCOM 2002,pp. 148-157, New York, 2002.
     [10] Limin Hu, “Topology Control for Multihop Packet Radio Networks”, IEEE Transactions on Communications, Vol. 41, No. 10, October 1993, pp. 1474 – 1481.
     [11] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, “Computational Geometry : Algorithms and Applications” Second Edition.
     [12] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage Problems in Wireless Ad-hoc Sensor Networks”, Proceedings of the 20th IEEE INFOCOM, pp.1380-1387, March 2001.
描述 碩士
國立政治大學
資訊科學學系
94753023
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0094753023
資料類型 thesis
dc.contributor.advisor 張宏慶zh_TW
dc.contributor.advisor Jang, Hung Chinen_US
dc.contributor.author (Authors) 方任瑋zh_TW
dc.contributor.author (Authors) Fang, Ren Weien_US
dc.creator (作者) 方任瑋zh_TW
dc.creator (作者) Fang, Ren Weien_US
dc.date (日期) 2007en_US
dc.date.accessioned 6-May-2016 16:43:57 (UTC+8)-
dc.date.available 6-May-2016 16:43:57 (UTC+8)-
dc.date.issued (上傳時間) 6-May-2016 16:43:57 (UTC+8)-
dc.identifier (Other Identifiers) G0094753023en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/94487-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 94753023zh_TW
dc.description.abstract (摘要) 在無線網狀網路(Wireless Mesh Network)中,每個節點須幫助相鄰節點轉送資料及提供使用者網路存取,例如WLAN(IEEE 802.11s)、WMAN(IEEE 802.16)等,皆可利用多跳接方式將資料轉送至通訊閘道器(Gateway)。在無線網狀網路中,常利用密集佈建的方式來解決通訊死角的問題。當網路節點的密度增加時,無線訊號的干擾也會增強,並且各節點的效能會顯著下降。
     在本研究中,將利用幾何學概念,解決網路干擾問題,並提出拓樸重建演算法來重建路徑,使網路干擾達到最小化。我們試著最小化節點與節點間的干擾,以提升整體無線網狀網路效能。我們將網路問題轉換成幾何問題,並定義在幾何圖形中線段交錯問題,之後驗證在幾何圖形中是否有線段交錯的現象發生。若發生線段交錯時,則將此線段從幾何圖形中移除,並且利用三角化演算法將此區域線段重新規劃,使相鄰節點間的干擾最小。當網路拓樸建立完成後,我們利用標準差公式將干擾較大的連線移除,使得網路效能提升。上述測試線段交錯及三角化多邊形演算法可在時間複雜度O(n log n)內找到干擾最小的解。最後,我們將利用網路模擬器(Network Simulator)驗證所提出的方法是否能達到預期的系統效能指標。
zh_TW
dc.description.abstract (摘要) In wireless mesh networks, such as WLAN (IEEE 802.11s), WMAN (IEEE 802.16), etc., each node should forward packets of neighboring nodes toward gateway using multi-hop routing mechanism. In wireless mesh network, as the density of network nodes increases, the RF interference will increase and the throughput of each node will drop rapidly.
     In our research, we use the geometry to resolve the RF interference problem by rebuilding network topology. We try to minimize the interference between neighboring nodes and improve the throughput in wireless mesh network. We transform the network topology problem into geometry problem and define the line intersection problem in geometric graph, then check path intersection in the geometric graph. If line intersection occurs in the graph, we remove the intersection line from the graph and re-plan the region by triangulation algorithm. When the network topology is built up, we use a standard deviation formula to improve network performance by removing longer links. The line intersection algorithm and triangulation algorithm, both of time complexity O(n log n), are used to find the minimal interference solution. At the end of our research, we use network simulator to verify if the proposed methods can help to meet all those performance expectations.
en_US
dc.description.abstract (摘要) Chapter 1 Introduction 1
     1.1 Background 1
     Chapter 2 Related Work 3
     Chapter 3 Proposed Method 9
     3.1 Definition 9
     3.1.1 Line Intersection Problem 10
     3.2 Research Mechanisms 12
     3.2.1 Plane Sweep Algorithm 12
     3.2.2 Voronoi Diagram Algorithm 16
     3.2.3 Delaunay Triangulation Algorithm 20
     3.3. Research Steps 26
     3.3.1 Related Formulae 27
     3.3.2 Node Deployment and Positioning 28
     3.3.3 Broadcast Own Location 28
     3.3.4 Transform Network Problem into Geometry Problem 29
     3.3.5 Check Line Intersection 29
     3.3.6 Find Neighbor Nodes 30
     3.3.7 Triangulate Topology 30
     3.3.8 Change Transmission Power 35
     3.3.9 Node Addition 35
     3.3.10 Node Deletion 36
     3.3.11 Modify Delaunay Triangulation 36
     3.3.11.1 Use Standard Deviation formula 37
     Chapter 4 Simulation and Analysis 41
     4.1 Simulation Topology and Assumptions 41
     4.2 Scenario and Result 42
     4.3 Summary 52
     Chapter 5 Conclusion and Future Work 53
     Chapter 6 References 55
-
dc.description.tableofcontents Chapter 1 Introduction 1
     1.1 Background 1
     Chapter 2 Related Work 3
     Chapter 3 Proposed Method 9
     3.1 Definition 9
     3.1.1 Line Intersection Problem 10
     3.2 Research Mechanisms 12
     3.2.1 Plane Sweep Algorithm 12
     3.2.2 Voronoi Diagram Algorithm 16
     3.2.3 Delaunay Triangulation Algorithm 20
     3.3. Research Steps 26
     3.3.1 Related Formulae 27
     3.3.2 Node Deployment and Positioning 28
     3.3.3 Broadcast Own Location 28
     3.3.4 Transform Network Problem into Geometry Problem 29
     3.3.5 Check Line Intersection 29
     3.3.6 Find Neighbor Nodes 30
     3.3.7 Triangulate Topology 30
     3.3.8 Change Transmission Power 35
     3.3.9 Node Addition 35
     3.3.10 Node Deletion 36
     3.3.11 Modify Delaunay Triangulation 36
     3.3.11.1 Use Standard Deviation formula 37
     Chapter 4 Simulation and Analysis 41
     4.1 Simulation Topology and Assumptions 41
     4.2 Scenario and Result 42
     4.3 Summary 52
     Chapter 5 Conclusion and Future Work 53
     Chapter 6 References 55
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0094753023en_US
dc.subject (關鍵詞) 拓樸控制zh_TW
dc.subject (關鍵詞) 三角化演算法zh_TW
dc.subject (關鍵詞) 平面掃描zh_TW
dc.subject (關鍵詞) 線段交錯zh_TW
dc.subject (關鍵詞) 干擾感知zh_TW
dc.subject (關鍵詞) 標準差zh_TW
dc.subject (關鍵詞) Topology Controlen_US
dc.subject (關鍵詞) Triangulation algorithmen_US
dc.subject (關鍵詞) Plane Sweepen_US
dc.subject (關鍵詞) Line intersectionen_US
dc.subject (關鍵詞) Interference-awareen_US
dc.subject (關鍵詞) Delaunay Triangulationen_US
dc.subject (關鍵詞) Voronoi Diagramen_US
dc.subject (關鍵詞) Standard deviationen_US
dc.title (題名) 無線網狀網路中干擾感知之拓樸控制的研究zh_TW
dc.title (題名) Interference-Aware Topology Control in Wireless Mesh Networken_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Ian F. Akyildiz, Xudong Wang, Weilin Wang, “Wireless Mesh Networks: a survey”,Computer Networks and ISDN System, Vol.47, Issue 4, pp. 445-487, 2005.
     [2] P. Gupta and P.R. Kumar, “The Capacity of Wireless Network”, IEEE Transactions on Information Theory 46(2), Mar. 2000.
     [3] V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks”, Proc. of IEEE INFOCOM, pp. 1405-1413, 1997.
     [4] A. Nasipuri, R. Castaneda, and S. R. Das, “Performance of Multipath Routing for On-Demand Protocols in Ad Hoc Networks”, ACM/Kluwer Mobile Networks and Applications (MONET), Journal, Vol. 6, No. 4, pp. 339-349, 2001.
     [5] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-Resilient, Energy-Efficient Multipath Routing in Wireless Sensor Networks”, Mobile Computing and Communications Review, Vol. 5, No. 4, pp. 11-25 2001.
     [6] K. Jain, J. Padhye, V. N. Padmanabhan and L. Qiu, “Impact of Interference on Multi-Hop Wireless Network Performance”, 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands, 471-487.
     [7] P. H. Hsiao and H. T. Kung, “Constructing Multiple Wireless Meshes in the Same Region with Beam-Crossing Grids”, IEEE Wireless Communications and Networking Conference (WCNC), March 2005.
     [8] M.Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. “Does Topology Control Reduce Interference?” Proceedings of the 5th ACM Int. Symposium on Mobile Ad-hoc Networking and Computing (MobiHoc), pp. 9-19, 2004.
     [9] Li X Y, Calinescu G, Wan P J. “Distributed Construction of a Planar Spanner and Routing for Ad Hoc Wireless Networks”, IEEE INFOCOM 2002,pp. 148-157, New York, 2002.
     [10] Limin Hu, “Topology Control for Multihop Packet Radio Networks”, IEEE Transactions on Communications, Vol. 41, No. 10, October 1993, pp. 1474 – 1481.
     [11] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, “Computational Geometry : Algorithms and Applications” Second Edition.
     [12] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage Problems in Wireless Ad-hoc Sensor Networks”, Proceedings of the 20th IEEE INFOCOM, pp.1380-1387, March 2001.
zh_TW