Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 聯合系統與獨特風險下之信用違約交換評價
Joint pricing of CDS spreads with Idiosyncratic and systematic risks作者 王聖文
Wang, Sheng-Wen貢獻者 翁久幸<br>廖四郎
Weng, Ruby Chiu-Hsing<br>Liao, Szu-Lang
王聖文
Wang, Sheng-Wen關鍵詞 信用違約交換
系統風險
獨特性風險
狀態空間模型
Variance Gamma過程
credit default swaps
systematic risk
idiosyncratic risk
state-space model
Variance Gamma process日期 2009 上傳時間 9-May-2016 11:42:12 (UTC+8) 摘要 本研究透過聯合系統與獨特風險綜合評估違約的強度,假設市場上經濟變數或資訊影響系統之違約強度,然若直接考慮所有經濟變數到模型中將可能會有共線性或維度過高之疑慮,因此透過狀態空間模型來設定狀態變數以及經濟變數之關係並將萃取三大狀態變數分別用以描述市場實質活動面、通貨膨脹以及信用環境。另外,將透過結構式模型來計算獨特性風險大小,當個別潛在的變數低於一定數值將導致個別的違約事件發生。而因布朗運動可能無法描述或校準市場上違約之鋒態以及偏態,將進一步考慮Variance Gamma過程用以更準確描述真實違約狀況。最後透過結合以上兩個風險綜合評估下,考慮一個聯合違約模型來評價信用違約交換之信用價差。
Systematic and idiosyncratic risks are supposed to jointly trigger the default events. This paper identifies three fundamental risks to capture the systematic movement: real activity, inflation, and credit environment. Since most macroeconomic variables fluctuate together, the state-space model is imposed to extract the three variables from macroeconomic data series. In the idiosyncratic part, the structural model is applied. That is, idiosyncratic default is triggered by the crossing of a barrier. For improvement of the underlying lognormal distribution, we assume the process for the potential variable of the firm follows a Variance Gamma process, sufficient dimensions of which can fit the skewed and leptokurtic distributions. Under the specific setting of combinations of the two risks (the so-called joint default model), we price credit default swaps.參考文獻 Ang, A. and M. Piazzesi. A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables. Journal of Monetary Economics, 50:745–787, 2003. Black, F. and J. Cox. Valuing corporate securities: some effects on bonds indenture provisions. Journal of Finance, 31:31–367, 1976. Bodie, Z., A. Kane, and A. Marcus. Essentials of Investments. McGraw Hill, 2005. Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice with Smile, Inflation and Credit. Springer, 2006. Cariboni, J. and W. Schoutens. Pricing credit default swaps under Lévy models. Journal of Computational Finance, 10:1–21, 2007. Carlin, B. P., N. G. Polson, and D. S. Stoffer. A Monte Carlo approach to nonnormal and nonlinear state-space modeling. Journal of the American Statistical Association, 87: 493–500, 1992. Carter, C. K. and P. Kohn. On Gibbs sampling for state space models. Biometrika, 81: 541–553, 1994. Cont, R. and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall/CRC, 2003. Das, S., D. Duffie, N. Kapadia, and L. Saita. Common failings: How corporate defaults are correlated. The Journal of Finance, 62:93–117, 2007. Davis, M. and V. Lo. Infectious defaults. Quantitative Finance, 1:382–387, 2001. Duffie, D. and K. J. Singleton. Modeling term structures of defaultable bonds. Review of Finance Studies, 12:687–720, 1999. Duffie, D., S. Leandro, and K. Wang. Multi-period corporate default prediction with stochastic covariates. Working Paper, Stanford University. Fu, M. C. Variance-gamma and Monte Carlo. Working Paper. Gelman, A., J. B. Carlin, H. S. Stern, D. B. Rubin, and A. Gelman. Bayesian Data Analysis. Chapman & Hall/CRC, 2003. Geman, S. and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions in Pattern Analysis and Machine Intelligence, 6:721–741, 1984. Hastings, W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970. Jorion, P. Value at Risk. McGraw Hill, 2007. Kalman, R. E. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82 (Series D):35–45, 1960. Kim, C. J. and C. R. Nelson. State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. The MIT Press, 1999. Kou, S. G. A jump diffusion model for option pricing. Management Science, 48: 1086a˛V1101, 2002. Lu, B. and L.Wu. Systematic movements in macroeconomic release and the term structure of interest rates. Working paper. Madan, D. B. andW. Schoutens. Break on through to the single side. In Statistics Technical Report, 2007. Madan, D. B., P. Carr, and E. C. Chang. The variance gamma process and option pricing. European Finance Review, 2:79–105, 1998. Merton, R. On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance, 29:449–470, 1974. Merton, R. C. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3:125–144, 1976. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 23: 1083–1953, 1953. Ross, S. M. Introduction to Probability Models. Academic Press, 2006. Ross, S. A. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13: 341–360, 1976. Schoutens, W. Lévy Process in Finance: Pricing Financial Derivatives. Wiley, 2003. Sharp, W. F. A simplified model for portfolio analysis. Management Science, 9:277–293, 1963. Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. Springer, 2008. Vasicek, O. An equilibrium characterization of the term structure. Journal of Financial Economics, 5:177–188, 1977. Welch, G. and G. Bishop. An introduction to the Kalman filter. Technical report, TR 95-041, University of North Carolina at Chapel Hill, 2006. Wu, L. and F. X. Zhang. A no-arbitrage analysis of macroeconomic determinants of the credit spread term structure. Management Science, 54:1160–1175, 2008. 描述 碩士
國立政治大學
統計學系
95354010資料來源 http://thesis.lib.nccu.edu.tw/record/#G0953540102 資料類型 thesis dc.contributor.advisor 翁久幸<br>廖四郎 zh_TW dc.contributor.advisor Weng, Ruby Chiu-Hsing<br>Liao, Szu-Lang en_US dc.contributor.author (Authors) 王聖文 zh_TW dc.contributor.author (Authors) Wang, Sheng-Wen en_US dc.creator (作者) 王聖文 zh_TW dc.creator (作者) Wang, Sheng-Wen en_US dc.date (日期) 2009 en_US dc.date.accessioned 9-May-2016 11:42:12 (UTC+8) - dc.date.available 9-May-2016 11:42:12 (UTC+8) - dc.date.issued (上傳時間) 9-May-2016 11:42:12 (UTC+8) - dc.identifier (Other Identifiers) G0953540102 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/94726 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 95354010 zh_TW dc.description.abstract (摘要) 本研究透過聯合系統與獨特風險綜合評估違約的強度,假設市場上經濟變數或資訊影響系統之違約強度,然若直接考慮所有經濟變數到模型中將可能會有共線性或維度過高之疑慮,因此透過狀態空間模型來設定狀態變數以及經濟變數之關係並將萃取三大狀態變數分別用以描述市場實質活動面、通貨膨脹以及信用環境。另外,將透過結構式模型來計算獨特性風險大小,當個別潛在的變數低於一定數值將導致個別的違約事件發生。而因布朗運動可能無法描述或校準市場上違約之鋒態以及偏態,將進一步考慮Variance Gamma過程用以更準確描述真實違約狀況。最後透過結合以上兩個風險綜合評估下,考慮一個聯合違約模型來評價信用違約交換之信用價差。 zh_TW dc.description.abstract (摘要) Systematic and idiosyncratic risks are supposed to jointly trigger the default events. This paper identifies three fundamental risks to capture the systematic movement: real activity, inflation, and credit environment. Since most macroeconomic variables fluctuate together, the state-space model is imposed to extract the three variables from macroeconomic data series. In the idiosyncratic part, the structural model is applied. That is, idiosyncratic default is triggered by the crossing of a barrier. For improvement of the underlying lognormal distribution, we assume the process for the potential variable of the firm follows a Variance Gamma process, sufficient dimensions of which can fit the skewed and leptokurtic distributions. Under the specific setting of combinations of the two risks (the so-called joint default model), we price credit default swaps. en_US dc.description.tableofcontents 謝辭 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables vii 1 Introduction 1 2 State-Space Models and the Gibbs Sampler 4 2.1 State-Space Models and the Kalman Filter . . . . . . . . . . . . . . . . . . 4 2.2 Parameter estimation and the Gibbs Sampler . . . . . . . . . . . . . . . . . 7 2.2.1 Generating State Vectors . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Generating Hyperparameters . . . . . . . . . . . . . . . . . . . . . 10 2.3 Data Description and Estimation Results . . . . . . . . . . . . . . . . . . . 11 3 Lévy Process 14 3.1 Introduction to Lévy Process . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Variance Gamma Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 The Monte Carlo Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Identification of the Systematic and Idiosyncratic Risks 20 4.1 Identification of the Systematic Risk . . . . . . . . . . . . . . . . . . . . . 20 4.2 Identification of the Idiosyncratic Risk . . . . . . . . . . . . . . . . . . . . 25 5 The Joint Default Model 28 5.1 The Joint Default Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 CDS Spreads Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Conclusion 34 References 36 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0953540102 en_US dc.subject (關鍵詞) 信用違約交換 zh_TW dc.subject (關鍵詞) 系統風險 zh_TW dc.subject (關鍵詞) 獨特性風險 zh_TW dc.subject (關鍵詞) 狀態空間模型 zh_TW dc.subject (關鍵詞) Variance Gamma過程 zh_TW dc.subject (關鍵詞) credit default swaps en_US dc.subject (關鍵詞) systematic risk en_US dc.subject (關鍵詞) idiosyncratic risk en_US dc.subject (關鍵詞) state-space model en_US dc.subject (關鍵詞) Variance Gamma process en_US dc.title (題名) 聯合系統與獨特風險下之信用違約交換評價 zh_TW dc.title (題名) Joint pricing of CDS spreads with Idiosyncratic and systematic risks en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) Ang, A. and M. Piazzesi. A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables. Journal of Monetary Economics, 50:745–787, 2003. Black, F. and J. Cox. Valuing corporate securities: some effects on bonds indenture provisions. Journal of Finance, 31:31–367, 1976. Bodie, Z., A. Kane, and A. Marcus. Essentials of Investments. McGraw Hill, 2005. Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice with Smile, Inflation and Credit. Springer, 2006. Cariboni, J. and W. Schoutens. Pricing credit default swaps under Lévy models. Journal of Computational Finance, 10:1–21, 2007. Carlin, B. P., N. G. Polson, and D. S. Stoffer. A Monte Carlo approach to nonnormal and nonlinear state-space modeling. Journal of the American Statistical Association, 87: 493–500, 1992. Carter, C. K. and P. Kohn. On Gibbs sampling for state space models. Biometrika, 81: 541–553, 1994. Cont, R. and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall/CRC, 2003. Das, S., D. Duffie, N. Kapadia, and L. Saita. Common failings: How corporate defaults are correlated. The Journal of Finance, 62:93–117, 2007. Davis, M. and V. Lo. Infectious defaults. Quantitative Finance, 1:382–387, 2001. Duffie, D. and K. J. Singleton. Modeling term structures of defaultable bonds. Review of Finance Studies, 12:687–720, 1999. Duffie, D., S. Leandro, and K. Wang. Multi-period corporate default prediction with stochastic covariates. Working Paper, Stanford University. Fu, M. C. Variance-gamma and Monte Carlo. Working Paper. Gelman, A., J. B. Carlin, H. S. Stern, D. B. Rubin, and A. Gelman. Bayesian Data Analysis. Chapman & Hall/CRC, 2003. Geman, S. and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions in Pattern Analysis and Machine Intelligence, 6:721–741, 1984. Hastings, W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970. Jorion, P. Value at Risk. McGraw Hill, 2007. Kalman, R. E. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82 (Series D):35–45, 1960. Kim, C. J. and C. R. Nelson. State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. The MIT Press, 1999. Kou, S. G. A jump diffusion model for option pricing. Management Science, 48: 1086a˛V1101, 2002. Lu, B. and L.Wu. Systematic movements in macroeconomic release and the term structure of interest rates. Working paper. Madan, D. B. andW. Schoutens. Break on through to the single side. In Statistics Technical Report, 2007. Madan, D. B., P. Carr, and E. C. Chang. The variance gamma process and option pricing. European Finance Review, 2:79–105, 1998. Merton, R. On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance, 29:449–470, 1974. Merton, R. C. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3:125–144, 1976. Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 23: 1083–1953, 1953. Ross, S. M. Introduction to Probability Models. Academic Press, 2006. Ross, S. A. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13: 341–360, 1976. Schoutens, W. Lévy Process in Finance: Pricing Financial Derivatives. Wiley, 2003. Sharp, W. F. A simplified model for portfolio analysis. Management Science, 9:277–293, 1963. Shreve, S. E. Stochastic Calculus for Finance II: Continuous-Time Models. Springer, 2008. Vasicek, O. An equilibrium characterization of the term structure. Journal of Financial Economics, 5:177–188, 1977. Welch, G. and G. Bishop. An introduction to the Kalman filter. Technical report, TR 95-041, University of North Carolina at Chapel Hill, 2006. Wu, L. and F. X. Zhang. A no-arbitrage analysis of macroeconomic determinants of the credit spread term structure. Management Science, 54:1160–1175, 2008. zh_TW