學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 在IEEE 802.11p網路中以偵測網路狀況為基礎動態調整競爭視窗的機制
Network status detection-based dynamic adaptation of contention window in IEEE 802.11p
作者 馮文捷
Feng, Wen Chieh
貢獻者 張宏慶
Jang, Hung Chin
馮文捷
Feng, Wen Chieh
關鍵詞 IEEE 802.11p
車用網路
競爭視窗
日期 2009
上傳時間 9-May-2016 15:29:06 (UTC+8)
摘要 近年來,無線網路發展的成熟、行車安全問題的重視、全球定位系統的普及,以及車用網路(Vehicular Ad Hoc Networks, VANET)在研究上的前瞻性與未來的高應用價值,使得車用網路的發展也愈來愈受到各方的探討。然而,車用網路的拓撲變動性相當高且規模大,且屬於點對點(Ad-Hoc)的網路架構,因此,對於吞吐量(throughput)和碰撞率(collision)以及延遲時間(delay)皆有一定的需求。此外,由於車輛在道路上的分布容易造成訊號之間的碰撞和干擾,所以我們藉由修改RTS/CTS機制提出一個Detection-Based MAC,其機制可透過封包之間的訊息傳遞,偵測出網路的壅塞狀態,預測網路中鄰近節點的競爭情形,並依此來動態調整競爭視窗大小。最後,將此方法實作在IEEE 802.11p的媒體存取控制層(MAC)中,以解決車用網路節點互相干擾所造成的過多碰撞,並提升整體吞吐量。
In recent years, the research on Vehicular Ad Hoc Networks (VANET) has been paid much attention due to the development of wireless network becoming mature, people think highly of traffic safety issues, the popularity of Global Positioning System (GPS), promising applications of VANET being exploited. However, VANET has the essential property of rapid change of large scale network topology. Besides, vehicles randomly distributed over the road usually causes serious signal collisions and interferences. Thus, it calls for special concerns to deal with the performances of throughput, collision, and delay. In this paper we propose a Detection-Based MAC mechanism by modifying RTS/CTS to detect network congestions through message exchange, and predict number of competing nodes. Both these information is used to dynamically adjust contention window sizes. Simulations are implemented on the MAC layer of IEEE 802.11p. The results show that the proposed method is able to effectively reduce collisions and increase overall throughput.
參考文獻 1. IEEE P802.11pTM/D5.0 Draft Standard for Information Technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 7: Wireless Access in Vehicular Environments
     2. 1609.4, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Multi-channel Operation, IEEE Vehicular Technology Society 2006
     3. 1609.3, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services, IEEE Vehicular Technology Society 2007
     4. 1609.2, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Security Services for Applications and Management Messages, IEEE Vehicular Technology Society 2006
     5. 1609.1, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Resource Manager, IEEE Vehicular Technology Society 2006
     6. W. Fisher, “Development of DSRC/WAVE Standards”, IEEE 802.11-07/2045r0, June 2007.
     7. Yunpeng Zang, Lothar Stibor, Bernhard Walke, Hans-Jürgen Reumerman and Andre Barroso, “A Novel MAC Protocol for Throughput Sensitive Applications in Vehicular Environments”, IEEE VTC 2007.
     8. Frederico Calì, Marco Conti, Associate Member, IEEE, and Enrico Gregori, Associate Member, IEEE, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit”, IEEE/ACM Transactions on Networking, Vol. 8, No. 6, December 2000
     9. G. Bianchi, “Performance analysis of the IEEE 802.11 Distributed Coordination Function”, in IEEE Journal on Selected Areas in Communications., Vol. 18, No. 3, pp. 535-547, March 2000.
     10. R. Bruno, M.Conti and E.Gregori, “IEEE 802.11 optimal performance: RTS/CTS mechanism vs. basic access”, in Proc. of IEEE PIMRC, Vol.4, pp. 1747 -1751, Sep 2002.
     11. L. Gannoune and S. Robert, ""Dynamic Tuning of the Minimum Contention Window (CWmin) for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad-Hoc Networks,`` in Proc. IEEE PIMRC `04, pp. 311--317, Sept. 2004.
     12. L. Gannoune and S. Robert, “Dynamic Tuning of the Maximum Contention Window (CWmax) for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad-Hoc Networks”, in Proc. IEEE VTC `04, pp. 2956--2961, Sept. 2004.
     13. F. Borgonovo, A. Capone, M. Cesana and L. Fratta, “ADHOC MAC: New MAC Architecture for Ad Hoc Networks Providing Efficient and Reliable Point-to-Point and Broadcast Services”, Wireless Networks 10, 359–366, 2004.
     14. F. Borgonovo, A. Capone, M. Cesana and L. Fratta, “RR-ALOHA, a reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks”, Proceedings of Med-Hoc-Net 2002, Baia Chia, Italy 2002.
     15. W. Crowther, R.Rettberg, D. Walden, S. Crustein, and F. Heart, “A System for Broadcast Communication: Reservation ALOHA”, Proceedings of the Sixth Hawaii International Conference on System Sciences, University of Hawaii, Honolulu, January 1973.
     16. C. Chigan, V. Oberoi, J. Li, “RPB-MACn: A Relative Position Based Collision-free MAC Nucleus for Vehicular Ad Hoc Networks”, Proceedings of IEEE Global Communications Conference (Globecom’06), pp.1-6, Nov. 2006.
     17. W. Ming, Y. Lin-tao, Li. Cheng-yi, J. Hao,”Capacity, collision and interference of VANET with IEEE 802.11 MAC” 2008.
     18. A. Sakata, T. Yamazato, H. Okada, M. KATAYAMAt, "Throughput Comparison of CSMA and CDMA slotted ALOHA in Inter-Vehicle Communication" Telecommunications 2007.
     19. Y. Wang, A. Ahmed, B. Krishnamachari and K. Psounis, “IEEE 802.11p Performance Evaluation and Protocol Enhancement”, 2008 IEEE International Conference onVehicular Electronics and Safety Columbus, OH, USA. September 22-24, 2008
     20. The Network Simulator ns 2. http://www.isi.edu/nsnam/ns/index.html. (hit:2009.10)
描述 碩士
國立政治大學
資訊科學學系
96753005
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096753005
資料類型 thesis
dc.contributor.advisor 張宏慶zh_TW
dc.contributor.advisor Jang, Hung Chinen_US
dc.contributor.author (Authors) 馮文捷zh_TW
dc.contributor.author (Authors) Feng, Wen Chiehen_US
dc.creator (作者) 馮文捷zh_TW
dc.creator (作者) Feng, Wen Chiehen_US
dc.date (日期) 2009en_US
dc.date.accessioned 9-May-2016 15:29:06 (UTC+8)-
dc.date.available 9-May-2016 15:29:06 (UTC+8)-
dc.date.issued (上傳時間) 9-May-2016 15:29:06 (UTC+8)-
dc.identifier (Other Identifiers) G0096753005en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/95266-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 96753005zh_TW
dc.description.abstract (摘要) 近年來,無線網路發展的成熟、行車安全問題的重視、全球定位系統的普及,以及車用網路(Vehicular Ad Hoc Networks, VANET)在研究上的前瞻性與未來的高應用價值,使得車用網路的發展也愈來愈受到各方的探討。然而,車用網路的拓撲變動性相當高且規模大,且屬於點對點(Ad-Hoc)的網路架構,因此,對於吞吐量(throughput)和碰撞率(collision)以及延遲時間(delay)皆有一定的需求。此外,由於車輛在道路上的分布容易造成訊號之間的碰撞和干擾,所以我們藉由修改RTS/CTS機制提出一個Detection-Based MAC,其機制可透過封包之間的訊息傳遞,偵測出網路的壅塞狀態,預測網路中鄰近節點的競爭情形,並依此來動態調整競爭視窗大小。最後,將此方法實作在IEEE 802.11p的媒體存取控制層(MAC)中,以解決車用網路節點互相干擾所造成的過多碰撞,並提升整體吞吐量。zh_TW
dc.description.abstract (摘要) In recent years, the research on Vehicular Ad Hoc Networks (VANET) has been paid much attention due to the development of wireless network becoming mature, people think highly of traffic safety issues, the popularity of Global Positioning System (GPS), promising applications of VANET being exploited. However, VANET has the essential property of rapid change of large scale network topology. Besides, vehicles randomly distributed over the road usually causes serious signal collisions and interferences. Thus, it calls for special concerns to deal with the performances of throughput, collision, and delay. In this paper we propose a Detection-Based MAC mechanism by modifying RTS/CTS to detect network congestions through message exchange, and predict number of competing nodes. Both these information is used to dynamically adjust contention window sizes. Simulations are implemented on the MAC layer of IEEE 802.11p. The results show that the proposed method is able to effectively reduce collisions and increase overall throughput.en_US
dc.description.tableofcontents 第一章 緒論 1
     1.1車用網路現況 1
     1.2 DSRC實體層和媒體存取控制層架構 4
     1.3研究議題與應用 6
     第二章 背景與相關研究 8
     2.1 RTS/CTS機制 10
     2.2 退後機制 12
     2.3 相關研究 13
     2.3.1 IEEE 802.11 14
     2.3.2車用網路 16
     2.3.2文獻分析比較 20
     第三章 研究方法 23
     3.1基本假設 24
     3.2仿真環境設計與分析 25
     3.2.1 目標值 Maximum Capacity 26
     3.2.2 虛擬傳送時間 27
     3.3 Detection-Based MAC演算法 31
     第四章 模擬實驗及分析 38
     4.1 硬體和軟體環境 38
     4.2 評估指標 40
     4.3 實驗結果與分析 41
     4.3.1 模擬實驗一 42
     4.3.2 模擬實驗二 46
     4.3.3 模擬實驗三 48
     4.3.4 模擬實驗四 52
     第五章 結論與未來研究工作 55
     參考文獻 58
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096753005en_US
dc.subject (關鍵詞) IEEE 802.11pzh_TW
dc.subject (關鍵詞) 車用網路zh_TW
dc.subject (關鍵詞) 競爭視窗zh_TW
dc.title (題名) 在IEEE 802.11p網路中以偵測網路狀況為基礎動態調整競爭視窗的機制zh_TW
dc.title (題名) Network status detection-based dynamic adaptation of contention window in IEEE 802.11pen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. IEEE P802.11pTM/D5.0 Draft Standard for Information Technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 7: Wireless Access in Vehicular Environments
     2. 1609.4, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Multi-channel Operation, IEEE Vehicular Technology Society 2006
     3. 1609.3, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services, IEEE Vehicular Technology Society 2007
     4. 1609.2, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Security Services for Applications and Management Messages, IEEE Vehicular Technology Society 2006
     5. 1609.1, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Resource Manager, IEEE Vehicular Technology Society 2006
     6. W. Fisher, “Development of DSRC/WAVE Standards”, IEEE 802.11-07/2045r0, June 2007.
     7. Yunpeng Zang, Lothar Stibor, Bernhard Walke, Hans-Jürgen Reumerman and Andre Barroso, “A Novel MAC Protocol for Throughput Sensitive Applications in Vehicular Environments”, IEEE VTC 2007.
     8. Frederico Calì, Marco Conti, Associate Member, IEEE, and Enrico Gregori, Associate Member, IEEE, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit”, IEEE/ACM Transactions on Networking, Vol. 8, No. 6, December 2000
     9. G. Bianchi, “Performance analysis of the IEEE 802.11 Distributed Coordination Function”, in IEEE Journal on Selected Areas in Communications., Vol. 18, No. 3, pp. 535-547, March 2000.
     10. R. Bruno, M.Conti and E.Gregori, “IEEE 802.11 optimal performance: RTS/CTS mechanism vs. basic access”, in Proc. of IEEE PIMRC, Vol.4, pp. 1747 -1751, Sep 2002.
     11. L. Gannoune and S. Robert, ""Dynamic Tuning of the Minimum Contention Window (CWmin) for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad-Hoc Networks,`` in Proc. IEEE PIMRC `04, pp. 311--317, Sept. 2004.
     12. L. Gannoune and S. Robert, “Dynamic Tuning of the Maximum Contention Window (CWmax) for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad-Hoc Networks”, in Proc. IEEE VTC `04, pp. 2956--2961, Sept. 2004.
     13. F. Borgonovo, A. Capone, M. Cesana and L. Fratta, “ADHOC MAC: New MAC Architecture for Ad Hoc Networks Providing Efficient and Reliable Point-to-Point and Broadcast Services”, Wireless Networks 10, 359–366, 2004.
     14. F. Borgonovo, A. Capone, M. Cesana and L. Fratta, “RR-ALOHA, a reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks”, Proceedings of Med-Hoc-Net 2002, Baia Chia, Italy 2002.
     15. W. Crowther, R.Rettberg, D. Walden, S. Crustein, and F. Heart, “A System for Broadcast Communication: Reservation ALOHA”, Proceedings of the Sixth Hawaii International Conference on System Sciences, University of Hawaii, Honolulu, January 1973.
     16. C. Chigan, V. Oberoi, J. Li, “RPB-MACn: A Relative Position Based Collision-free MAC Nucleus for Vehicular Ad Hoc Networks”, Proceedings of IEEE Global Communications Conference (Globecom’06), pp.1-6, Nov. 2006.
     17. W. Ming, Y. Lin-tao, Li. Cheng-yi, J. Hao,”Capacity, collision and interference of VANET with IEEE 802.11 MAC” 2008.
     18. A. Sakata, T. Yamazato, H. Okada, M. KATAYAMAt, "Throughput Comparison of CSMA and CDMA slotted ALOHA in Inter-Vehicle Communication" Telecommunications 2007.
     19. Y. Wang, A. Ahmed, B. Krishnamachari and K. Psounis, “IEEE 802.11p Performance Evaluation and Protocol Enhancement”, 2008 IEEE International Conference onVehicular Electronics and Safety Columbus, OH, USA. September 22-24, 2008
     20. The Network Simulator ns 2. http://www.isi.edu/nsnam/ns/index.html. (hit:2009.10)
zh_TW