Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 語意式之旅遊推薦系統以台北市為例之研究
A study of ontological travel planning recommendation systems for Taipei City作者 黃少華
Huang, Shao Hua貢獻者 楊建民
Yang, Jiann Min
黃少華
Huang, Shao Hua關鍵詞 旅遊
推薦系統
行程規劃
語意網
本體論
Tourism
Recommendation System
Travel Planning
Semantic Web
Ontology日期 2010 上傳時間 9-May-2016 16:29:11 (UTC+8) 摘要 近來,旅遊資訊廣被旅遊者在網路上使用。雖然網路上的資訊十分豐富,但是使用者仍常常難以找尋到精準的資訊。而旅遊商品的特性為無形的,所以使用者不能實際地來評估這個服務直到他實際地體驗之後。也就是因為此種特性,所以如何讓使用者在真正體驗到之前能夠取得可信與真實的旅遊資訊變得十分重要。為了解決此問題,語意網絡的概念即出現來解決人與電腦間溝通的問題。而一個本體即是由一個正式化的、某一具有精確規格概念的領域來提供之可實行的平台來發展可信的旅遊資訊服務。 在本論文中,我們探討了旅遊推薦系統的發展、其遭遇的問題、語意網相關之技術包含了:網路本體語言、資源描述架構、和一些目前現有的旅遊本體發展的情況。此外,為了要能提供更智慧化的旅遊行程規劃推薦服務,我們將語意的想法帶入了此領域。我們會提出一個方法讓智慧型旅遊行程推薦服務能在本體論的基礎上實現。所以,一系列的旅遊本體會被建構發展,來讓我們的芻形系統能夠做出行程推薦的服務。此提出的系統能夠驗證語意網的概念在旅遊推薦領域的可行性。它亦能利用屬性與之間的關係來推薦出更智慧型的資訊,找出個人化的景點、活動與行程給旅行者。
Nowadays, travel information is increasing to appeal the tourists on the web. Al- though there are numerous information provided on the web, the user gets puzzled in nding accurate information. The tourism product has an intangible nature in that cus- tomers cannot physically evaluate the services on oer until practically experienced. This makes access to credible and authentic information about tourism products before the actual experience very valuable. In order to solve these problems, the concept of seman- tic web comes into existence to have communication between human and computer. An Ontology being a formal, explicit specication of concepts of a domain provides a viable platform for the development of credible tourism information services. In this paper, we discuss the development of travel recommendation system, the problems it encounters, the related technology about semantic web including OWL, RD- F/RDFS, and some current circumstances of the existing tourism ontologies as well. Futhermore, in order to make more intelligent travel planning recommendation services, we bring the idea of semantic into tourism domain. We will present an approach aimed at enabling intelligent recommendation services in tourism support systems using ontolo- gies. A suite of tourism ontologies was developed and engaged to enable a prototypical tourism system with recommednation capabilities. The proposed system can verify the feasibility and concept of taking semantic web technology into tourism recommendation systems domain. It also can recommend more intelligent information using properties, relationships of travel ontology, and is responsible for nding personalized attractions, activities and a trip itinerary for travelers.參考文獻 [1] World travel and tourism council. http://www.wttc.org/. [2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys- tems:a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, (6):734{749, 2005. [3] A. Adomavicius G., Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, (6):734{749, 2005. [4] D. Bachlechner. Ontology collection in view of an e-tourism portal. In Technical report. Technical Report, Digital Enterprise Research Institute, 2004. [5] Hirsh H. Basu, C. and W. Cohen. Recommendation as classication: using social and content-based information in recommendation. Proceedings of the 1998 workshop on recommender systems, page 11Ė15, 1998. Menlo Park, CA: AAAI Press. [6] Hendler J. Berners-Lee, T. and O. Lassila. The semantic web. Scientic American, (5):34Ė43, 2001. [7] D. Billsus and M. J. Pazzani. Learning collaborative information lters. Machine learning proceedings of the fteenth international conference, 1998. [8] Heckerman D. Breese, J. S. and C. Kadie. Empirical analysis of predictive algo- rithms for collaborative ltering. Proceedings of the 14th conference on uncertainty in articial intelligence (UAI-98), page 43Ė52, 1998. [9] Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf schema. In Technical report. www.w3c.org, 2002. [10] Jing-Yun Chen. The establishment of tourism narration databases by semantic systems{a case study in the physical geography of yang-ming mountains. pages 1{5, 2004. [11] Fodor O. Ricci F. Werthner H. DellńErba, M. Harmonise: a solution for data in- teroperability. Proceedings of Second IFIP Conference on E-Commerce, E-Business, E-Government, pages 433{445, 2002. Kluwer, Boston. [12] Wober K. Fesenmaier, D.R. and H.Werthner. Introduction: recommendation systems in tourism. Destination Recommendation Systems: Behavioral Foundations and Applications, CAB International,London, 2006. [13] Johannes Klein Frank Leymann Dieter Roller Francisco Curbera, Yaron Goland and Sanjiva Weerawarana. Business process execution language for web services, version 1.0. In Technical report, www.ibm.com, 2002. [14] T. Franke. Enhancing an online regional tourism consulting system with extended personalized services. Information Technology and Tourism, (3):135{150, 2003. [15] N. Fuhr and C. Buckley. A probabilistic learning approach for document indexing. Transactions on Information Systems, (3):223Ė248, 1991. [16] J. Gaschnig. Performance measurement and analysis of certain search algorithms. 1979. [17] Asuncion Gomez-Perez, Natalia Juristo, and Juan Pazos. Evaluation and assessment of the knowledge sharing technology. In Towards very large knowledge bases, pages 289{296, Holanda, 1995. IOS Press. [18] Thomas R. Gruber. A translation approach to portable ontology specications. pages 199{220, 1993. [19] Konstan J. A. Herlocker, J. L. and J. Riedl. Explaining collaborative ltering rec- ommendations. Proceedings on the ACM 2000 conference on computer supported cooperative work, page 241Ė250, 2000. Philadelphia. [20] D. Kanellopoulos, S. Kotsiantis, and P. Pintelas. Intelligent knowledge manage- ment for the travel domain. GESTS Int. Transactions on Computer Science and Engineering, (1):95{106, 2006. [21] Musen M. Noy N. Knublauch, H. Tutorial: Creating semantic web (owl)ontologies with protege. 2nd International Semantic Web Conference (ISWC2003), 2003. Sani- bel, Island, Florida, U.S.A. [22] A. Kohrs and B. Merialdo. Clustering for collaborative ltering applications in computational intelligence for modeling, control and automation. CIMCA, 1999. Vienna. IOS Press. [23] Miller B. N. Maltz D. Herlocker J. L. Gordon L. R. Konstan, J. A. and J. Riedl. Grouplens: applying collaborative ltering to usenet news. Communications of the ACM, (3):77Ė87, 1997. [24] Vipin Kumar. Algorithms for constraint-satisfaction problem: A survey. Articial Intelligence, (1):32{44, 1992. [25] Ora Lassila and Ralph R. Swick. Resource description framework (rdf) model and syntax specication. Technical report, www.w3c.org, 1999. [26] S. Loban. A framework for computer-assisted travel counseling. Annals of Tourism Research, (4):813{834, 1997. [27] A. K. Mackworth. Performance measurement and analysis of certain search algo- rithms. Articial Intelligence, (1):99{118, 1977. [28] Mooney R.J. Melville, P. and R. Nagarajan. Content-boosted collaborative lter- ing for improved recommendations. Proceedings of the 18th national conference on articial intelligence (AAAI-2002), page 187Ė192, July 2002. Edmonton, Canada. [29] R. Mizoguchi. Ontology engineering environments. Handbook on Ontologies, Springer, Berlin, 2004. 275-298. [30] B. Pan and D.R. Fesenmaier. Online information search: vacation planning process. Annals of Tourism Research, (3):809{832, 2006. [31] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl web ontology lan- guage semantics and abstract syntax. In Technical report. www.w3c.org, 2004. [32] M. J. Pazzani. A framework for collaborative, content-based and demographic l- tering. Articial Intelligence Review, page 393Ė408, 1999. [33] Patrick Hayes Peter F. Patel-Schneider and Ian Horrocks. Owl web ontology language semantics and abstract syntax. In Technical report, www.w3c.org,, 2004. [34] Franz Puhretmair, Hildegard Rumetshofer, and Erwin Schaumlechner. Extended Decision Making in Tourism Information Systems. Springer Berlin / Heidelberg, 2002. [35] Iacovou-N. Suchak M. Bergstrom P. Resnick, P. and J. Riedl. Grouplens: an open architecture for collaborative ltering of netnews. CSCW, page 175Ė186, 1994. [36] F. Ricci and H Werthner. Case base querying for travel planning recommendation. Information Technology and Tourism, (3-4):215{226, 2001. [37] Karypis-G. Konstan J. Sarwar, B. and J. Riedl. Analysis of recommendation al- gorithms for e-commerce. Proceedings of ACM E-Commerce 2000 conference, page 158Ė167, 2000. [38] Konstan J. A. Schafer, J. B. and J. Riedl. Data mining and knowledge discovery. Electronic commerce recommender applications, (1/2):115Ė153, 2001. [39] Konstan J. A. Schafer, J. B. and J. Riedl. Electronic commerce recommender appli- cations. Data Mining and Knowledge Discovery, (1/2):115Ė15, 3 2001. [40] James Hendler Tim Berners-Lee and Ora Lassila. The semantic web. In Scientic American, 2001. [41] C. M. Sperberg-McQueen Tim Bray, Jean Paoli and Eve Maler. Extensible markup language (xml) 1.0 (second edition). In Technical report, www.w3c.org, 2000. [42] Mike Uschold and Michael Gruninger. Ontologies principles,methods and applica- tions. Knowledge Engineering Review, (2):14{20, 2 1996. 描述 碩士
國立政治大學
資訊管理學系
97356030資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097356030 資料類型 thesis dc.contributor.advisor 楊建民 zh_TW dc.contributor.advisor Yang, Jiann Min en_US dc.contributor.author (Authors) 黃少華 zh_TW dc.contributor.author (Authors) Huang, Shao Hua en_US dc.creator (作者) 黃少華 zh_TW dc.creator (作者) Huang, Shao Hua en_US dc.date (日期) 2010 en_US dc.date.accessioned 9-May-2016 16:29:11 (UTC+8) - dc.date.available 9-May-2016 16:29:11 (UTC+8) - dc.date.issued (上傳時間) 9-May-2016 16:29:11 (UTC+8) - dc.identifier (Other Identifiers) G0097356030 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/95544 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 97356030 zh_TW dc.description.abstract (摘要) 近來,旅遊資訊廣被旅遊者在網路上使用。雖然網路上的資訊十分豐富,但是使用者仍常常難以找尋到精準的資訊。而旅遊商品的特性為無形的,所以使用者不能實際地來評估這個服務直到他實際地體驗之後。也就是因為此種特性,所以如何讓使用者在真正體驗到之前能夠取得可信與真實的旅遊資訊變得十分重要。為了解決此問題,語意網絡的概念即出現來解決人與電腦間溝通的問題。而一個本體即是由一個正式化的、某一具有精確規格概念的領域來提供之可實行的平台來發展可信的旅遊資訊服務。 在本論文中,我們探討了旅遊推薦系統的發展、其遭遇的問題、語意網相關之技術包含了:網路本體語言、資源描述架構、和一些目前現有的旅遊本體發展的情況。此外,為了要能提供更智慧化的旅遊行程規劃推薦服務,我們將語意的想法帶入了此領域。我們會提出一個方法讓智慧型旅遊行程推薦服務能在本體論的基礎上實現。所以,一系列的旅遊本體會被建構發展,來讓我們的芻形系統能夠做出行程推薦的服務。此提出的系統能夠驗證語意網的概念在旅遊推薦領域的可行性。它亦能利用屬性與之間的關係來推薦出更智慧型的資訊,找出個人化的景點、活動與行程給旅行者。 zh_TW dc.description.abstract (摘要) Nowadays, travel information is increasing to appeal the tourists on the web. Al- though there are numerous information provided on the web, the user gets puzzled in nding accurate information. The tourism product has an intangible nature in that cus- tomers cannot physically evaluate the services on oer until practically experienced. This makes access to credible and authentic information about tourism products before the actual experience very valuable. In order to solve these problems, the concept of seman- tic web comes into existence to have communication between human and computer. An Ontology being a formal, explicit specication of concepts of a domain provides a viable platform for the development of credible tourism information services. In this paper, we discuss the development of travel recommendation system, the problems it encounters, the related technology about semantic web including OWL, RD- F/RDFS, and some current circumstances of the existing tourism ontologies as well. Futhermore, in order to make more intelligent travel planning recommendation services, we bring the idea of semantic into tourism domain. We will present an approach aimed at enabling intelligent recommendation services in tourism support systems using ontolo- gies. A suite of tourism ontologies was developed and engaged to enable a prototypical tourism system with recommednation capabilities. The proposed system can verify the feasibility and concept of taking semantic web technology into tourism recommendation systems domain. It also can recommend more intelligent information using properties, relationships of travel ontology, and is responsible for nding personalized attractions, activities and a trip itinerary for travelers. en_US dc.description.tableofcontents 1.1 The Semantic Web Layer Stack (Source: James et al., 2001) . . . . . . . 2 2.1 The Comparison Between CF and CB (Source: James et al., 2001) . . . . 8 2.2 The RDF Graph (Source: Lassila et al., 1999) . . . . . . . . . . . . . . . 12 3.1 Structure of Recommendation System based on Semantic Web (Source: From our thesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Recommendation Mechanism (Source: From our thesis) . . . . . . . . . . 22 3.3 Comparison Between Travel Ways and Speed (Source: From our thesis) . 23 3.4 Illustration of Computing Recommendation Circle (Source: From our thesis) 24 3.5 Planning and Scheduling Stage Example 1 (Source: From our thesis) . . 25 3.6 Planning and Scheduling Stage Example 2 (Source: From our thesis) . . 25 3.7 Structure of Attraction Ontology (Source: From our thesis) . . . . . . . . 28 3.8 Overview of Attraction domain (Source: From our thesis) . . . . . . . . . 28 3.9 Instance example of Mackay Tomb (Source: From our thesis) . . . . . . . 29 3.10 Structure of Accommodation domain (Source: From our thesis) . . . . . 29 3.11 Overview of Accommodation domain (Source: From our thesis) . . . . . 30 3.12 Instance example of AquaBella Resort Hotel (Source: From our thesis) . 30 3.13 Structure of Food domain (Source: From our thesis) . . . . . . . . . . . . 31 3.14 Overview of Food domain (Source: From our thesis) . . . . . . . . . . . . 32 3.15 Instance example of DinTaiFung Chinese Restaurant (Source: From our thesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.16 Overview of User domain (Source: From our thesis) . . . . . . . . . . . . 33 3.17 Instance example of User (Source: From our thesis) . . . . . . . . . . . . 34 4.1 Searching Temple Type Attraction from Taipei City (Source: From our thesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Result of Temple Type Attraction in Taipei City (Source: From our thesis) 37 4.3 Detail Information About Tianhou Temple (Source: From our thesis) . . 37 4.4 Searching Main Type Food from Taipei City (Source: From our thesis) . 38 4.5 Result of Food Information in Taipei City (Source: From our thesis) . . . 38 4.6 Detail Information About DinTaiFung (Source: From our thesis) . . . . . 38 4.7 Searching All Accommodation from Taipei City (Source: From our thesis) 39 4.8 Result of Accommodation Information in Taipei City (Source: From our thesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.9 Detail Information About Ambassador Hotel-Taipei (Source: From our thesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.10 Enter Attraction Requirement (Source: From our thesis) . . . . . . . . . 40 4.11 Enter Food Requirement (Source: From our thesis) . . . . . . . . . . . . 41 4.12 Enter Accommodation Requirement (Source: From our thesis) . . . . . . 41 4.13 Final Recommendation Route (Source: From our thesis) . . . . . . . . . 41 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097356030 en_US dc.subject (關鍵詞) 旅遊 zh_TW dc.subject (關鍵詞) 推薦系統 zh_TW dc.subject (關鍵詞) 行程規劃 zh_TW dc.subject (關鍵詞) 語意網 zh_TW dc.subject (關鍵詞) 本體論 zh_TW dc.subject (關鍵詞) Tourism en_US dc.subject (關鍵詞) Recommendation System en_US dc.subject (關鍵詞) Travel Planning en_US dc.subject (關鍵詞) Semantic Web en_US dc.subject (關鍵詞) Ontology en_US dc.title (題名) 語意式之旅遊推薦系統以台北市為例之研究 zh_TW dc.title (題名) A study of ontological travel planning recommendation systems for Taipei City en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] World travel and tourism council. http://www.wttc.org/. [2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys- tems:a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, (6):734{749, 2005. [3] A. Adomavicius G., Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, (6):734{749, 2005. [4] D. Bachlechner. Ontology collection in view of an e-tourism portal. In Technical report. Technical Report, Digital Enterprise Research Institute, 2004. [5] Hirsh H. Basu, C. and W. Cohen. Recommendation as classication: using social and content-based information in recommendation. Proceedings of the 1998 workshop on recommender systems, page 11Ė15, 1998. Menlo Park, CA: AAAI Press. [6] Hendler J. Berners-Lee, T. and O. Lassila. The semantic web. Scientic American, (5):34Ė43, 2001. [7] D. Billsus and M. J. Pazzani. Learning collaborative information lters. Machine learning proceedings of the fteenth international conference, 1998. [8] Heckerman D. Breese, J. S. and C. Kadie. Empirical analysis of predictive algo- rithms for collaborative ltering. Proceedings of the 14th conference on uncertainty in articial intelligence (UAI-98), page 43Ė52, 1998. [9] Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf schema. In Technical report. www.w3c.org, 2002. [10] Jing-Yun Chen. The establishment of tourism narration databases by semantic systems{a case study in the physical geography of yang-ming mountains. pages 1{5, 2004. [11] Fodor O. Ricci F. Werthner H. DellńErba, M. Harmonise: a solution for data in- teroperability. Proceedings of Second IFIP Conference on E-Commerce, E-Business, E-Government, pages 433{445, 2002. Kluwer, Boston. [12] Wober K. Fesenmaier, D.R. and H.Werthner. Introduction: recommendation systems in tourism. Destination Recommendation Systems: Behavioral Foundations and Applications, CAB International,London, 2006. [13] Johannes Klein Frank Leymann Dieter Roller Francisco Curbera, Yaron Goland and Sanjiva Weerawarana. Business process execution language for web services, version 1.0. In Technical report, www.ibm.com, 2002. [14] T. Franke. Enhancing an online regional tourism consulting system with extended personalized services. Information Technology and Tourism, (3):135{150, 2003. [15] N. Fuhr and C. Buckley. A probabilistic learning approach for document indexing. Transactions on Information Systems, (3):223Ė248, 1991. [16] J. Gaschnig. Performance measurement and analysis of certain search algorithms. 1979. [17] Asuncion Gomez-Perez, Natalia Juristo, and Juan Pazos. Evaluation and assessment of the knowledge sharing technology. In Towards very large knowledge bases, pages 289{296, Holanda, 1995. IOS Press. [18] Thomas R. Gruber. A translation approach to portable ontology specications. pages 199{220, 1993. [19] Konstan J. A. Herlocker, J. L. and J. Riedl. Explaining collaborative ltering rec- ommendations. Proceedings on the ACM 2000 conference on computer supported cooperative work, page 241Ė250, 2000. Philadelphia. [20] D. Kanellopoulos, S. Kotsiantis, and P. Pintelas. Intelligent knowledge manage- ment for the travel domain. GESTS Int. Transactions on Computer Science and Engineering, (1):95{106, 2006. [21] Musen M. Noy N. Knublauch, H. Tutorial: Creating semantic web (owl)ontologies with protege. 2nd International Semantic Web Conference (ISWC2003), 2003. Sani- bel, Island, Florida, U.S.A. [22] A. Kohrs and B. Merialdo. Clustering for collaborative ltering applications in computational intelligence for modeling, control and automation. CIMCA, 1999. Vienna. IOS Press. [23] Miller B. N. Maltz D. Herlocker J. L. Gordon L. R. Konstan, J. A. and J. Riedl. Grouplens: applying collaborative ltering to usenet news. Communications of the ACM, (3):77Ė87, 1997. [24] Vipin Kumar. Algorithms for constraint-satisfaction problem: A survey. Articial Intelligence, (1):32{44, 1992. [25] Ora Lassila and Ralph R. Swick. Resource description framework (rdf) model and syntax specication. Technical report, www.w3c.org, 1999. [26] S. Loban. A framework for computer-assisted travel counseling. Annals of Tourism Research, (4):813{834, 1997. [27] A. K. Mackworth. Performance measurement and analysis of certain search algo- rithms. Articial Intelligence, (1):99{118, 1977. [28] Mooney R.J. Melville, P. and R. Nagarajan. Content-boosted collaborative lter- ing for improved recommendations. Proceedings of the 18th national conference on articial intelligence (AAAI-2002), page 187Ė192, July 2002. Edmonton, Canada. [29] R. Mizoguchi. Ontology engineering environments. Handbook on Ontologies, Springer, Berlin, 2004. 275-298. [30] B. Pan and D.R. Fesenmaier. Online information search: vacation planning process. Annals of Tourism Research, (3):809{832, 2006. [31] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl web ontology lan- guage semantics and abstract syntax. In Technical report. www.w3c.org, 2004. [32] M. J. Pazzani. A framework for collaborative, content-based and demographic l- tering. Articial Intelligence Review, page 393Ė408, 1999. [33] Patrick Hayes Peter F. Patel-Schneider and Ian Horrocks. Owl web ontology language semantics and abstract syntax. In Technical report, www.w3c.org,, 2004. [34] Franz Puhretmair, Hildegard Rumetshofer, and Erwin Schaumlechner. Extended Decision Making in Tourism Information Systems. Springer Berlin / Heidelberg, 2002. [35] Iacovou-N. Suchak M. Bergstrom P. Resnick, P. and J. Riedl. Grouplens: an open architecture for collaborative ltering of netnews. CSCW, page 175Ė186, 1994. [36] F. Ricci and H Werthner. Case base querying for travel planning recommendation. Information Technology and Tourism, (3-4):215{226, 2001. [37] Karypis-G. Konstan J. Sarwar, B. and J. Riedl. Analysis of recommendation al- gorithms for e-commerce. Proceedings of ACM E-Commerce 2000 conference, page 158Ė167, 2000. [38] Konstan J. A. Schafer, J. B. and J. Riedl. Data mining and knowledge discovery. Electronic commerce recommender applications, (1/2):115Ė153, 2001. [39] Konstan J. A. Schafer, J. B. and J. Riedl. Electronic commerce recommender appli- cations. Data Mining and Knowledge Discovery, (1/2):115Ė15, 3 2001. [40] James Hendler Tim Berners-Lee and Ora Lassila. The semantic web. In Scientic American, 2001. [41] C. M. Sperberg-McQueen Tim Bray, Jean Paoli and Eve Maler. Extensible markup language (xml) 1.0 (second edition). In Technical report, www.w3c.org, 2000. [42] Mike Uschold and Michael Gruninger. Ontologies principles,methods and applica- tions. Knowledge Engineering Review, (2):14{20, 2 1996. zh_TW