dc.creator (作者) | Chen, Yen-Liang ; Tang, Kwei ; Shen, Ren-Jie ; Hua, Ya-Han | en_US |
dc.creator (作者) | 唐揆 | - |
dc.creator (作者) | 企管系 | - |
dc.date (日期) | 2005-08 | en_US |
dc.date.accessioned | 25-Nov-2008 10:41:18 (UTC+8) | - |
dc.date.available | 25-Nov-2008 10:41:18 (UTC+8) | - |
dc.date.issued (上傳時間) | 25-Nov-2008 10:41:18 (UTC+8) | - |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/10254 | - |
dc.description.abstract (摘要) | Market basket analysis (also known as association-rule mining) is a useful method of discovering customer purchasing patterns by extracting associations or co-occurrences from stores` transactional databases. Because the information obtained from the analysis can be used in forming marketing, sales, service, and operation strategies, it has drawn increased research interest. The existing methods, however, may fail to discover important purchasing patterns in a multi-store environment, because of an implicit assumption that products under consideration are on shelf all the time across all stores. In this paper, we propose a new method to overcome this weakness. Our empirical evaluation shows that the proposed method is computationally efficient, and that it has advantage over the traditional method when stores are diverse in size, product mix changes rapidly over time, and larger numbers of stores and periods are considered. | - |
dc.format | application/ | en_US |
dc.language | en | en_US |
dc.language | en-US | en_US |
dc.language.iso | en_US | - |
dc.relation (關聯) | Decision Support Systems Volume 40, Issue 2, August 2005, Pages 339–354 | en_US |
dc.subject (關鍵詞) | Association rules; Data mining; Store chain; Algorithm | - |
dc.title (題名) | Market basket analysis in a multiple store environment | en_US |
dc.type (資料類型) | article | en |
dc.identifier.doi (DOI) | 10.1016/j.dss.2004.04.009 | en_US |
dc.doi.uri (DOI) | http://dx.doi.org/10.1016/j.dss.2004.04.009 | en_US |