Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 隨機波動下結構型人壽保險之違約風險分析
Default Analysis of Structured Life Insurance Policies under Stochastic Volatility
作者 陳毅潔
Chen, Yi Chieh
貢獻者 張士傑
Chang, Shih Chieh
陳毅潔
Chen, Yi Chieh
關鍵詞 資產負債表
現金流量
解約
資產配置
Heston模型
Blance sheet
cash flow
surrender
asset allocation
Heston model
日期 2016
上傳時間 11-Jul-2016 17:05:16 (UTC+8)
摘要 資本市場之系統性風險加劇時,對於保險公司所持有之標的資產將出現大幅波動,影響保險公司之獲利表現,本研究透過建立資產負債表之隨機模型,檢視系統性風險下對於人壽保險業違約風險之變化。本研究採用Heston (1993)模型來描述標的資產的隨機波動過程,並依據結構型人壽保險之現金流量建立壽險公司之資產負債模型,藉由資產與負債的變化衡量壽險公司違約風險,同時分析影響違約風險之各項因子,包含解約、死亡、保本與清償能力之關聯性。本研究使用違約機率、風險值及條件尾端期望值作為風險衡量指標,經實證分析證明違約風險會隨著解約率的增加而下降,解約費用之設定亦會影響公司之淨值變化,另外,當壽險公司初始資本額愈高,其承保能力愈穩定,則未來違約機率愈低。
When systematic risk in capital market is increasing, the underlying asset for structured life insurances will fluctuate sharply and affect the profit the performance of insurance companies. In this paper, we survey the variation of default value for life insurance industry under systematic risk. We establish the balance model for insurance companies based on the cash flow of structured life insurance and measure default risk of insurance companies by the changes in assets and liabilities. In addition, we analysis factors affecting default risk, including surrender, death, value at risk and conditional tail expectation as risk measure index. Through empirical analysis, we proved that as the surrender rate rises, the default risk will decrease and the expected equity value is affected by surrender fees. In addition, as the capital of insurance company become higher, its underwriting capacity will be more stable, then the probability of default will be lower.
參考文獻 張士傑,台灣保險市場發展、監理與評論,台灣金融研訓院,2015。
韓傳祥,金融中波動率的數學問題,數學傳播,卷37,2013。
F. Black and M. Scoles. The pricing of options and corporate liabilities. Journal of Political Economy, 81:637-654,1973.
M. J. Brennan and E. S. Schwartz. The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics,3:195-213, 1976.
D. Brigo and F. Mercurio. Interest Rate Models – Theory and Practice: With Smile, Inflation and Credit. Springer-Verlag, Berlin, second edition, 2006.
J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest rates. Economertrica,53:385-407,1985.
T. Gerstner, M. Griebel, M. Holtz, R. Goschnick, and M. Haep. A general asset-liability management model for the efficient simulation of portfolios of life insurance policies. Insurance: Mathematics and Economics, 42:704-716, 2008.
A. Grosen and P. L. Jorgensen. Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies. Insurance: Mathematics and Economics, 26:37-57,2000.
S. Heston. A closed-form solutions for options with stochastic volatility. Review of Financial Studies, 6:327-343,1993.
W. Hsuan and S. C. Chang. Fair insurance guarantee premium : A study of life insurers in Taiwan. In Proceedings at the World Risk and Insurance Economics Congress, Munich, Germany, August 2015.
J. Hull and A.White. The pricing of options on assets with stochastic volatilites. Jouranl of Finance, 42:281-300, 1987.
K. Kladivdo. Maximum likelihood estimation of the Cox-Ingersoll-Ross process: the MATLAB implementation. In Technical Computing Prague.working paper,2007.
M. A. Milevsky and S. E. Posner. The titanic option: valuation of the guaranteed minimum death benefit in variable annuities and mutual funds. Journal of Risk and Insurance, 68: 93-128,2001.
N. Moodley. The Heston model: A practical approach with matlab code. Master’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005.
W. Poklewski-Koziell. Stochastic volatility models: Calibration, pricing and hedging. Master’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2012.
F. Rouah. The Heston Model and its Extensions in Matlab and C#. John Wiley & Sons, Hoboken, N.J.,2013.
M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option. Journal of Finance, 40:455-480,1985.
描述 碩士
國立政治大學
風險管理與保險研究所
103358010
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103358010
資料類型 thesis
dc.contributor.advisor 張士傑zh_TW
dc.contributor.advisor Chang, Shih Chiehen_US
dc.contributor.author (Authors) 陳毅潔zh_TW
dc.contributor.author (Authors) Chen, Yi Chiehen_US
dc.creator (作者) 陳毅潔zh_TW
dc.creator (作者) Chen, Yi Chiehen_US
dc.date (日期) 2016en_US
dc.date.accessioned 11-Jul-2016 17:05:16 (UTC+8)-
dc.date.available 11-Jul-2016 17:05:16 (UTC+8)-
dc.date.issued (上傳時間) 11-Jul-2016 17:05:16 (UTC+8)-
dc.identifier (Other Identifiers) G0103358010en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/98858-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 風險管理與保險研究所zh_TW
dc.description (描述) 103358010zh_TW
dc.description.abstract (摘要) 資本市場之系統性風險加劇時,對於保險公司所持有之標的資產將出現大幅波動,影響保險公司之獲利表現,本研究透過建立資產負債表之隨機模型,檢視系統性風險下對於人壽保險業違約風險之變化。本研究採用Heston (1993)模型來描述標的資產的隨機波動過程,並依據結構型人壽保險之現金流量建立壽險公司之資產負債模型,藉由資產與負債的變化衡量壽險公司違約風險,同時分析影響違約風險之各項因子,包含解約、死亡、保本與清償能力之關聯性。本研究使用違約機率、風險值及條件尾端期望值作為風險衡量指標,經實證分析證明違約風險會隨著解約率的增加而下降,解約費用之設定亦會影響公司之淨值變化,另外,當壽險公司初始資本額愈高,其承保能力愈穩定,則未來違約機率愈低。zh_TW
dc.description.abstract (摘要) When systematic risk in capital market is increasing, the underlying asset for structured life insurances will fluctuate sharply and affect the profit the performance of insurance companies. In this paper, we survey the variation of default value for life insurance industry under systematic risk. We establish the balance model for insurance companies based on the cash flow of structured life insurance and measure default risk of insurance companies by the changes in assets and liabilities. In addition, we analysis factors affecting default risk, including surrender, death, value at risk and conditional tail expectation as risk measure index. Through empirical analysis, we proved that as the surrender rate rises, the default risk will decrease and the expected equity value is affected by surrender fees. In addition, as the capital of insurance company become higher, its underwriting capacity will be more stable, then the probability of default will be lower.en_US
dc.description.tableofcontents 摘要.............................2
Abstract.........................3
一 緒論.........................7
第一節 研究動機與目的.........7
第二節 文獻回顧...............9
二 結構型人壽保險................11
第一節 結構型金融商品.........11
第二節 結構性人壽保險.........12
第三節 保險契約試算分析.......14
三 模型建構.....................17
第一節 資產模型..............17
第二節 負債模型..............19
第三節 經濟資產負債模型.......21
第四節 風險衡量指標...........22
四 數值分析.....................24
第一節 參數估計..............24
第二節 模擬數值結果..........26
五 結論........................33
參考文獻........................34
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103358010en_US
dc.subject (關鍵詞) 資產負債表zh_TW
dc.subject (關鍵詞) 現金流量zh_TW
dc.subject (關鍵詞) 解約zh_TW
dc.subject (關鍵詞) 資產配置zh_TW
dc.subject (關鍵詞) Heston模型zh_TW
dc.subject (關鍵詞) Blance sheeten_US
dc.subject (關鍵詞) cash flowen_US
dc.subject (關鍵詞) surrenderen_US
dc.subject (關鍵詞) asset allocationen_US
dc.subject (關鍵詞) Heston modelen_US
dc.title (題名) 隨機波動下結構型人壽保險之違約風險分析zh_TW
dc.title (題名) Default Analysis of Structured Life Insurance Policies under Stochastic Volatilityen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 張士傑,台灣保險市場發展、監理與評論,台灣金融研訓院,2015。
韓傳祥,金融中波動率的數學問題,數學傳播,卷37,2013。
F. Black and M. Scoles. The pricing of options and corporate liabilities. Journal of Political Economy, 81:637-654,1973.
M. J. Brennan and E. S. Schwartz. The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics,3:195-213, 1976.
D. Brigo and F. Mercurio. Interest Rate Models – Theory and Practice: With Smile, Inflation and Credit. Springer-Verlag, Berlin, second edition, 2006.
J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest rates. Economertrica,53:385-407,1985.
T. Gerstner, M. Griebel, M. Holtz, R. Goschnick, and M. Haep. A general asset-liability management model for the efficient simulation of portfolios of life insurance policies. Insurance: Mathematics and Economics, 42:704-716, 2008.
A. Grosen and P. L. Jorgensen. Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies. Insurance: Mathematics and Economics, 26:37-57,2000.
S. Heston. A closed-form solutions for options with stochastic volatility. Review of Financial Studies, 6:327-343,1993.
W. Hsuan and S. C. Chang. Fair insurance guarantee premium : A study of life insurers in Taiwan. In Proceedings at the World Risk and Insurance Economics Congress, Munich, Germany, August 2015.
J. Hull and A.White. The pricing of options on assets with stochastic volatilites. Jouranl of Finance, 42:281-300, 1987.
K. Kladivdo. Maximum likelihood estimation of the Cox-Ingersoll-Ross process: the MATLAB implementation. In Technical Computing Prague.working paper,2007.
M. A. Milevsky and S. E. Posner. The titanic option: valuation of the guaranteed minimum death benefit in variable annuities and mutual funds. Journal of Risk and Insurance, 68: 93-128,2001.
N. Moodley. The Heston model: A practical approach with matlab code. Master’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005.
W. Poklewski-Koziell. Stochastic volatility models: Calibration, pricing and hedging. Master’s thesis, University of the Witwatersrand, Johannesburg, South Africa, 2012.
F. Rouah. The Heston Model and its Extensions in Matlab and C#. John Wiley & Sons, Hoboken, N.J.,2013.
M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option. Journal of Finance, 40:455-480,1985.
zh_TW