學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 多軸飛行器用於自拍情境之互動模式研究
Exploring Interaction Modalities for a Selfie Drone
作者 陳建方
Chen, Chien Fang
貢獻者 余能豪<br>陳儒修
Yu, Neng Hao<br>Chen, Ru Shou
陳建方
Chen, Chien Fang
關鍵詞 多軸飛行器
行動裝置
互動模式
虛擬實境
Drone
Multi-copter
Mobile device
Interaction
Virtual reality
日期 2016
上傳時間 22-Aug-2016 13:34:30 (UTC+8)
摘要 「自拍」是時下特有的社群文化,使用手持相機或自拍棒輔助拍照多有限制。然而搭載相機鏡頭的多軸飛行器(Camera-equipped drone)日漸普及,未來將有機會成為新的攝影器材。
本研究由初步訪談並分類「日常生活中操作相機」之心智模型:(1)以自身為中心,指揮攝影師移動之操控者模式(User Mode),適合近距操作,如自拍;(2)使用者透過相機視角,取得觀測角度之觀景窗模式(Viewfinder Mode),適合取得遠距影像,如災區探勘;(3)以第三人稱同時控制攝影者與被攝者的導演模式(Director Mode),擅於處理人與鏡頭相對空間關係,適合已預想好全局構圖與分鏡腳本。本研究依上述分類討論文獻與商品之優勢與限制,探索「操作空間中任務擺放之相機(多軸飛行器)」的理想互動方法後,將「操作空間中的相機」互動切分為兩階段流程設計:(1)Positioning階段:以User Mode直視飛行器,指揮相機位置;(2)Fine Tuning階段:以Viewfinder Mode透過觀景窗取得影像並微調拍攝參數。
本研究將著重於Positioning階段之飛行器控制互動方法,透過探討使用者的空間認知,提出三種符合使用者心智模型之飛行器運動座標系(球狀、柱狀與修正之三維座標),結合智慧型手機操作的類指向輸入方法(Semi-Direct Pointing),並實作沉浸式VR多軸飛行器體驗模擬器「Skyfie」,並進行兩次使用者測試,模擬使用者在3D空間中指揮飛行器移動至指定位置進行拍攝,實驗結果證明本研究提出之三種座標系統皆比傳統三維座標容易操作,並於最後討論各運動座標系適用之情境。
Taking Selfie is a brand new type of photographic behavior and has become a phenomenon on social medias. In Asia, many people love taking and sharing selfies in their daily life and have create several tools to take good selfies suck as a selfie stick or a portable tripod. In the meantime, camera-equipped drones are getting more and more popular today. We can envision a future where personal flying selfie bots are always with us.
Among the previous works and commercial products, the interaction techniques for controlling drone are mostly designed in drone-centric mode that require a longer training and are not easy for taking an anticipated shot. We investigate the user needs in taking selfies and propose an interaction technique that contains Positioning state and Fine Tuning state which are designed with user and viewfinder mode. Users can place a drone in a specified coordinate system by our semi-direct pointing technique and then compose the framing on the smartphone screen. We propose 3 coordinate systems for positioning stage and conduct two user studies in a simulated VR environment to validate the performance and user acceptances.
In conclusion, we find that all three coordinate systems are more user friendly compare to traditional Cartesian coordinate system considering the test results and implementation cost.
參考文獻 Apple Inc. (2015.) iOS Dev Center. Retrieved Apr. 19, 2015 from
https://developer.apple.com/devcenter/ios/index.action
Baig, M. H. (2015). MotionKit. Retrieved Apr. 19, 2015 from
https://github.com/MHaroonBaig/MotionKit
Brulez, N. (2015) AR. Drone SDK 3. Retrieved Apr. 19, 2015 from
https://github.com/ARDroneSDK3/ARSDKBuildUtils
Chi, P.L. (2013). Beyond Beauty - TAIWAN FROM ABOVE. Retrieved Apr. 19, 2015, from http://www.imdb.com/title/tt3316302/
Dajiang Innovation Technology Inc. (2015) DJI Phantom 2 Official Website. Retrieved Apr.19, 2015 from http://www.dji.com/product/phantom-2
Hawkes, J. (2015) Aerial Photography. Retrieved Apr. 19, 2015 from http://www.jasonhawkes.com/
Helico Aerospace Industries US LLC, Airdog Official Website. Retrieved Apr. 19, 2015 from https://www.airdog.com/
Higuchi, K. & Rekimoto, J., (2012). Flying head: head-synchronized unmanned aerial vehicle control for flying telepresence. SA `12, Article 12, 2 pages. DOI=10.1145/2407707.2407719
Higuchi, K., Shimada, T. & Rekimoto, J. (2011). Flying sports assistant: external visual imagery representation for sports training. AH `11, Article 7 , 4 pages. DOI=10.1145/1959826.1959833
Ikeuchi, K., Otsuka, T., Yoshii, A., Sakamoto, M. & Nakajima, T. (2014). KinecDrone: enhancing somatic sensation to fly in the sky with Kinect and AR.Drone. AH `14, Article 53, 2 pages. DOI=10.1145/2582051.2582104
Morgan, J.L., (2010) Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience vol. 60(1) 47-59. DOI= 10.1525/bio.2010.60.1.9
Mueller, F., Graether, E. & Toprak, C. (2013). Joggobot: jogging with a flying robot. CHI EA `13, 2845-2846. DOI=10.1145/2468356.2479541
Nagi, J., Giusti, A., Di Caro, G.A. & Gambardella, L., M. (2014). Human Control of UAVs using Face Pose Estimates and Hand Gestures. HRI `14, 252-253. DOI=10.1145/2559636.2559833
Oculus Developers. (2016) Oculus Mobile VR Documentation. Retrieved Apr. 16, 2015 from https://developer.oculus.com/documentation/mobilesdk/latest/
OpenCV Dev Team. (2015) OpenCV 2.4.9.0 Documentation. Retrieved Apr. 19, 2015 from http://docs.opencv.org/
Parrot SA, (2015). Bebop Drone Official Website. Retrieved Apr. 19, 2015 from
http://www.parrot.com/usa/products/bebop-drone/
Parrot SA, (2015). Method for the intuitive piloting of a drone by means of a remote control (US 20130173088 A1). Retrieved Apr.19, 2015 from
http://www.google.com/patents/US20130173088
Pfeil, K., Koh, S. L., & LaViola, J., (2013). Exploring 3d gesture metaphors for interaction with unmanned aerial vehicles. IUI `13, 257-266. DOI=10.1145/2449396.2449429
Poupyrev, I., Billinghurst, M., Weghorst, S. and Ichikawa, T. (1996). The go-go interaction technique: non-linear mapping for direct manipulation in VR. UIST `96, 79-80. DOI=10.1145/237091.237102
Samsung Electronics Taiwan. (2016). Samsung Galaxy S6 Edge Product Specification. Retrieved Apr. 16, 2016 from
http://www.samsung.com/tw/consumer/mobile-phones/smart-phone/galaxy-s/SM-G9250ZKABRI
Schneider, D. (2014). Flying Selfie Bots: Tag-Along Video Drones Are Here. IEEE Spectrum. Retrieved Apr.19, 2015 from
http://spectrum.ieee.org/aerospace/aviation/flying-selfie-bots-tagalong-video-drones-are-here
Squadrone System Inc. (2015) HEXO+ Drone Official Website. Retrieved Apr. 19, 2015 from http://hexoplus.com/
Srikanth, M., Bala, K. & Durand, F. (2014). Computational rim illumination with aerial robots. CAe `14, 57-66. DOI=10.1145/2630099.2630105
黃婉婷(2012)。青少年自拍行為之動機、意義及其與自我認同之關係。碩士論文。彰化師範大學,美術系藝術教育碩士班,台灣。
描述 碩士
國立政治大學
數位內容碩士學位學程
102462012
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102462012
資料類型 thesis
dc.contributor.advisor 余能豪<br>陳儒修zh_TW
dc.contributor.advisor Yu, Neng Hao<br>Chen, Ru Shouen_US
dc.contributor.author (Authors) 陳建方zh_TW
dc.contributor.author (Authors) Chen, Chien Fangen_US
dc.creator (作者) 陳建方zh_TW
dc.creator (作者) Chen, Chien Fangen_US
dc.date (日期) 2016en_US
dc.date.accessioned 22-Aug-2016 13:34:30 (UTC+8)-
dc.date.available 22-Aug-2016 13:34:30 (UTC+8)-
dc.date.issued (上傳時間) 22-Aug-2016 13:34:30 (UTC+8)-
dc.identifier (Other Identifiers) G0102462012en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/100562-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 數位內容碩士學位學程zh_TW
dc.description (描述) 102462012zh_TW
dc.description.abstract (摘要) 「自拍」是時下特有的社群文化,使用手持相機或自拍棒輔助拍照多有限制。然而搭載相機鏡頭的多軸飛行器(Camera-equipped drone)日漸普及,未來將有機會成為新的攝影器材。
本研究由初步訪談並分類「日常生活中操作相機」之心智模型:(1)以自身為中心,指揮攝影師移動之操控者模式(User Mode),適合近距操作,如自拍;(2)使用者透過相機視角,取得觀測角度之觀景窗模式(Viewfinder Mode),適合取得遠距影像,如災區探勘;(3)以第三人稱同時控制攝影者與被攝者的導演模式(Director Mode),擅於處理人與鏡頭相對空間關係,適合已預想好全局構圖與分鏡腳本。本研究依上述分類討論文獻與商品之優勢與限制,探索「操作空間中任務擺放之相機(多軸飛行器)」的理想互動方法後,將「操作空間中的相機」互動切分為兩階段流程設計:(1)Positioning階段:以User Mode直視飛行器,指揮相機位置;(2)Fine Tuning階段:以Viewfinder Mode透過觀景窗取得影像並微調拍攝參數。
本研究將著重於Positioning階段之飛行器控制互動方法,透過探討使用者的空間認知,提出三種符合使用者心智模型之飛行器運動座標系(球狀、柱狀與修正之三維座標),結合智慧型手機操作的類指向輸入方法(Semi-Direct Pointing),並實作沉浸式VR多軸飛行器體驗模擬器「Skyfie」,並進行兩次使用者測試,模擬使用者在3D空間中指揮飛行器移動至指定位置進行拍攝,實驗結果證明本研究提出之三種座標系統皆比傳統三維座標容易操作,並於最後討論各運動座標系適用之情境。
zh_TW
dc.description.abstract (摘要) Taking Selfie is a brand new type of photographic behavior and has become a phenomenon on social medias. In Asia, many people love taking and sharing selfies in their daily life and have create several tools to take good selfies suck as a selfie stick or a portable tripod. In the meantime, camera-equipped drones are getting more and more popular today. We can envision a future where personal flying selfie bots are always with us.
Among the previous works and commercial products, the interaction techniques for controlling drone are mostly designed in drone-centric mode that require a longer training and are not easy for taking an anticipated shot. We investigate the user needs in taking selfies and propose an interaction technique that contains Positioning state and Fine Tuning state which are designed with user and viewfinder mode. Users can place a drone in a specified coordinate system by our semi-direct pointing technique and then compose the framing on the smartphone screen. We propose 3 coordinate systems for positioning stage and conduct two user studies in a simulated VR environment to validate the performance and user acceptances.
In conclusion, we find that all three coordinate systems are more user friendly compare to traditional Cartesian coordinate system considering the test results and implementation cost.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
一、攝影與自拍行為 1
二、初步研究 3
三、多軸飛行器的原理與發展 5
第二節 研究目的 11
第二章 文獻及案例探討 13
第一節 操控者模式(User Mode) 14
第二節 觀景窗模式(Viewfinder Mode) 15
第三節 導演模式(Director Mode) 18
第四節 小結 20
第三章 系統設計 23
第一節 互動模型設計 24
一、操作控制階段(Positioning) 25
二、拍攝控制階段(Fine Tuning) 29
第二節 系統原型設計 31
一、頭戴式顯示環境 32
二、手持裝置控制器 34
第三節 小結 37
第四章 系統評估 39
第一節 第一次使用者測試 40
一、實驗設計與流程 40
二、實驗環境與目標描述 42
三、受測者資訊 44
四、量化結果 44
五、質化結果 46
第二節 第二次使用者測試 52
一、實驗設計與流程 53
二、實驗環境與任務描述 54
三、受測者資訊 54
四、量化結果 55
五、質化結果 55
第三節 小結 59
第五章 結論與未來展望 61
第一節 研究貢獻 61
第二節 研究限制與未來展望 63
附錄ㄧ 參考文獻 67
附錄二 質化測試問卷(一) 71
附錄三 質化測試問卷(二) 75
附錄四 名詞簡稱對照表 77
附錄五 受測者訪談資料 79
zh_TW
dc.format.extent 48835281 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102462012en_US
dc.subject (關鍵詞) 多軸飛行器zh_TW
dc.subject (關鍵詞) 行動裝置zh_TW
dc.subject (關鍵詞) 互動模式zh_TW
dc.subject (關鍵詞) 虛擬實境zh_TW
dc.subject (關鍵詞) Droneen_US
dc.subject (關鍵詞) Multi-copteren_US
dc.subject (關鍵詞) Mobile deviceen_US
dc.subject (關鍵詞) Interactionen_US
dc.subject (關鍵詞) Virtual realityen_US
dc.title (題名) 多軸飛行器用於自拍情境之互動模式研究zh_TW
dc.title (題名) Exploring Interaction Modalities for a Selfie Droneen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Apple Inc. (2015.) iOS Dev Center. Retrieved Apr. 19, 2015 from
https://developer.apple.com/devcenter/ios/index.action
Baig, M. H. (2015). MotionKit. Retrieved Apr. 19, 2015 from
https://github.com/MHaroonBaig/MotionKit
Brulez, N. (2015) AR. Drone SDK 3. Retrieved Apr. 19, 2015 from
https://github.com/ARDroneSDK3/ARSDKBuildUtils
Chi, P.L. (2013). Beyond Beauty - TAIWAN FROM ABOVE. Retrieved Apr. 19, 2015, from http://www.imdb.com/title/tt3316302/
Dajiang Innovation Technology Inc. (2015) DJI Phantom 2 Official Website. Retrieved Apr.19, 2015 from http://www.dji.com/product/phantom-2
Hawkes, J. (2015) Aerial Photography. Retrieved Apr. 19, 2015 from http://www.jasonhawkes.com/
Helico Aerospace Industries US LLC, Airdog Official Website. Retrieved Apr. 19, 2015 from https://www.airdog.com/
Higuchi, K. & Rekimoto, J., (2012). Flying head: head-synchronized unmanned aerial vehicle control for flying telepresence. SA `12, Article 12, 2 pages. DOI=10.1145/2407707.2407719
Higuchi, K., Shimada, T. & Rekimoto, J. (2011). Flying sports assistant: external visual imagery representation for sports training. AH `11, Article 7 , 4 pages. DOI=10.1145/1959826.1959833
Ikeuchi, K., Otsuka, T., Yoshii, A., Sakamoto, M. & Nakajima, T. (2014). KinecDrone: enhancing somatic sensation to fly in the sky with Kinect and AR.Drone. AH `14, Article 53, 2 pages. DOI=10.1145/2582051.2582104
Morgan, J.L., (2010) Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience vol. 60(1) 47-59. DOI= 10.1525/bio.2010.60.1.9
Mueller, F., Graether, E. & Toprak, C. (2013). Joggobot: jogging with a flying robot. CHI EA `13, 2845-2846. DOI=10.1145/2468356.2479541
Nagi, J., Giusti, A., Di Caro, G.A. & Gambardella, L., M. (2014). Human Control of UAVs using Face Pose Estimates and Hand Gestures. HRI `14, 252-253. DOI=10.1145/2559636.2559833
Oculus Developers. (2016) Oculus Mobile VR Documentation. Retrieved Apr. 16, 2015 from https://developer.oculus.com/documentation/mobilesdk/latest/
OpenCV Dev Team. (2015) OpenCV 2.4.9.0 Documentation. Retrieved Apr. 19, 2015 from http://docs.opencv.org/
Parrot SA, (2015). Bebop Drone Official Website. Retrieved Apr. 19, 2015 from
http://www.parrot.com/usa/products/bebop-drone/
Parrot SA, (2015). Method for the intuitive piloting of a drone by means of a remote control (US 20130173088 A1). Retrieved Apr.19, 2015 from
http://www.google.com/patents/US20130173088
Pfeil, K., Koh, S. L., & LaViola, J., (2013). Exploring 3d gesture metaphors for interaction with unmanned aerial vehicles. IUI `13, 257-266. DOI=10.1145/2449396.2449429
Poupyrev, I., Billinghurst, M., Weghorst, S. and Ichikawa, T. (1996). The go-go interaction technique: non-linear mapping for direct manipulation in VR. UIST `96, 79-80. DOI=10.1145/237091.237102
Samsung Electronics Taiwan. (2016). Samsung Galaxy S6 Edge Product Specification. Retrieved Apr. 16, 2016 from
http://www.samsung.com/tw/consumer/mobile-phones/smart-phone/galaxy-s/SM-G9250ZKABRI
Schneider, D. (2014). Flying Selfie Bots: Tag-Along Video Drones Are Here. IEEE Spectrum. Retrieved Apr.19, 2015 from
http://spectrum.ieee.org/aerospace/aviation/flying-selfie-bots-tagalong-video-drones-are-here
Squadrone System Inc. (2015) HEXO+ Drone Official Website. Retrieved Apr. 19, 2015 from http://hexoplus.com/
Srikanth, M., Bala, K. & Durand, F. (2014). Computational rim illumination with aerial robots. CAe `14, 57-66. DOI=10.1145/2630099.2630105
黃婉婷(2012)。青少年自拍行為之動機、意義及其與自我認同之關係。碩士論文。彰化師範大學,美術系藝術教育碩士班,台灣。
zh_TW