Publications-Journal Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 彩色影像之人臉角度分類
其他題名 Pose Classification of Human Faces in Color Images
作者 林群雄
Lin, Chiunhsiun
關鍵詞 人臉偵測 ; 人臉角度分類 ; 皮膚顏色分割 ; 權值面具函數
Face Detection ; Face Poses Classification ; Skin Color Segmentation ; Weighting Mask Function
日期 2001-12
上傳時間 29-Sep-2016 17:02:17 (UTC+8)
摘要 在本文中,我們建議的系統是由兩個主要部分組成。第一個部分是藉由皮膚顏色分割和等腰三角形為基礎來搜尋潛在臉的區域。我們首先讀取一張RGB彩色影像。先判斷此RGB彩色影像是否有複雜背景。若無,則我們將跳過「皮膚顏色分割方法」,而直接將原RGB彩色影像直接轉變成二值化的影像。若有複雜背景,則將藉由皮膚顏色分割,找出皮膚顏色區域。再將這個皮膚顏色分割後的影像轉變成二值化的影像。再藉由尋找等腰三角形的關係去得到潛在臉的區域。第二部分是要完成臉部角度分類的任務。我們首先將每一個潛在臉的區域,都做了尺寸標準化的處理。然後,藉由人臉權值面具函數獲得每一個人臉的正確位置。其次,再藉由方向權值面具函數判斷人臉的正確方向。最後,再藉由角度權值面具函數決定人臉轉的角度。實驗結果顯示約百分之九十九的成功比率,並且相對錯誤比率很低。
In this paper, we introduce a novel approach for automatic estimation of the poses/degrees of human faces embedded in complicated environments. The proposed system consists of two primary parts. The first part is to search the potential face regions. First, if the input image contains complex background, then the potential face regions are gotten from skin-color- segmentation and the isosceles-triangle criterion that is based on the rules of "the combination of two eyes and one mouth". If the input image contains complex background, then we will use the input RGB color image to perform the human-skin color-segmentation task to remove the complicated surroundings. Then the result of the input image that is removed the complicated surroundings will be converted to a binary image. If the input image doesn`t contain complex backgrounds, then we will skip the human-skin color- segmentation task. The input image will be directly converted to a binary image. Secondly, label all 4-connected components and detect any 3 centers of 3 different blocks that form an isosceles triangle. Then, clip the regions that satisfy the isosceles triangle criteria as the potential face regions. The second part of the proposed system is to perform the task of pose verification. In the second part, each face candidate obtained from the previous process is normalized to a standard size (60*60 pixels). Then, each of these normalized potential face regions is fed to the face weighting mask function to obtain the location of the face region. Next, the face region is fed to the direction weighting mask function to determine which direction the matching face region looks at. Last, the face region is fed to the pose weighting mask function to decide the poses/degrees of the human faces. The proposed face poses/degrees classification system can determine the poses of multiple faces embedded in complicated backgrounds. Experimental results demonstrate that an approximately 99% success rate is achieved and the relative false estimation rate is very low.
關聯 國立政治大學學報, 83, 197-222
資料類型 article
dc.creator (作者) 林群雄zh_TW
dc.creator (作者) Lin, Chiunhsiun
dc.date (日期) 2001-12
dc.date.accessioned 29-Sep-2016 17:02:17 (UTC+8)-
dc.date.available 29-Sep-2016 17:02:17 (UTC+8)-
dc.date.issued (上傳時間) 29-Sep-2016 17:02:17 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/102345-
dc.description.abstract (摘要) 在本文中,我們建議的系統是由兩個主要部分組成。第一個部分是藉由皮膚顏色分割和等腰三角形為基礎來搜尋潛在臉的區域。我們首先讀取一張RGB彩色影像。先判斷此RGB彩色影像是否有複雜背景。若無,則我們將跳過「皮膚顏色分割方法」,而直接將原RGB彩色影像直接轉變成二值化的影像。若有複雜背景,則將藉由皮膚顏色分割,找出皮膚顏色區域。再將這個皮膚顏色分割後的影像轉變成二值化的影像。再藉由尋找等腰三角形的關係去得到潛在臉的區域。第二部分是要完成臉部角度分類的任務。我們首先將每一個潛在臉的區域,都做了尺寸標準化的處理。然後,藉由人臉權值面具函數獲得每一個人臉的正確位置。其次,再藉由方向權值面具函數判斷人臉的正確方向。最後,再藉由角度權值面具函數決定人臉轉的角度。實驗結果顯示約百分之九十九的成功比率,並且相對錯誤比率很低。
dc.description.abstract (摘要) In this paper, we introduce a novel approach for automatic estimation of the poses/degrees of human faces embedded in complicated environments. The proposed system consists of two primary parts. The first part is to search the potential face regions. First, if the input image contains complex background, then the potential face regions are gotten from skin-color- segmentation and the isosceles-triangle criterion that is based on the rules of "the combination of two eyes and one mouth". If the input image contains complex background, then we will use the input RGB color image to perform the human-skin color-segmentation task to remove the complicated surroundings. Then the result of the input image that is removed the complicated surroundings will be converted to a binary image. If the input image doesn`t contain complex backgrounds, then we will skip the human-skin color- segmentation task. The input image will be directly converted to a binary image. Secondly, label all 4-connected components and detect any 3 centers of 3 different blocks that form an isosceles triangle. Then, clip the regions that satisfy the isosceles triangle criteria as the potential face regions. The second part of the proposed system is to perform the task of pose verification. In the second part, each face candidate obtained from the previous process is normalized to a standard size (60*60 pixels). Then, each of these normalized potential face regions is fed to the face weighting mask function to obtain the location of the face region. Next, the face region is fed to the direction weighting mask function to determine which direction the matching face region looks at. Last, the face region is fed to the pose weighting mask function to decide the poses/degrees of the human faces. The proposed face poses/degrees classification system can determine the poses of multiple faces embedded in complicated backgrounds. Experimental results demonstrate that an approximately 99% success rate is achieved and the relative false estimation rate is very low.
dc.format.extent 1803421 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) 國立政治大學學報, 83, 197-222
dc.subject (關鍵詞) 人臉偵測 ; 人臉角度分類 ; 皮膚顏色分割 ; 權值面具函數
dc.subject (關鍵詞) Face Detection ; Face Poses Classification ; Skin Color Segmentation ; Weighting Mask Function
dc.title (題名) 彩色影像之人臉角度分類zh_TW
dc.title.alternative (其他題名) Pose Classification of Human Faces in Color Images
dc.type (資料類型) article