Publications-Theses
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | LASSO於羅吉斯迴歸模型之估計的應用 Application of LASSO Estimation of a Logistic Regression Model |
Creator | 鍾其昀 |
Contributor | 薛慧敏 鍾其昀 |
Key Words | 最小平方法 最大概似估計 |
Date | 2017 |
Date Issued | 8-Feb-2017 16:32:56 (UTC+8) |
Summary | 隨著資料量龐大,解釋變數過多的時代來臨,變數選取將是我們重要的議題。在線性迴歸分析中,傳統採用最小平方法(least square method)來估計模型,然而得到的迴歸係數估計值的偏差雖然比較小,但其變異程度卻較大,且預測得也不夠精準。若是考慮對迴歸係數加入限制式時,則估計量將與原本的最小平方法有何差異,偏差與標準差之間的比較。接著將此估計法應用至羅吉斯迴模型時,利用三筆實際資料,比較與最大概似估計(maximum likelihood estimate,簡稱MLE)法建立的迴歸模型及預測準確率,並於模擬實驗中,以表格及圖型呈現兩方法在估計量上的差異。 |
參考文獻 | 一、英文文獻 1. Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, 215-244. 2. Breiman, L. (1995) Better Subset Regression Using the Nonnegative Garrotte, American Statistical Association, 37, 373-384. 3. Breiman, L. and Spector P. (1992) Submodel Selection and Evaluation in Regression. The X-Random Case, International Statistical Review, 60, 291-319. 4. Dalal, N. Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection, http://lear.inrialpes.fr/. 5. Friedl, I., Tilg, N. (1995) Variance estimates in logistic regression using the bootstrap, Communications in Statistic-Theory and Methods, 24(2), 473-486. 6. Hoerl, E. and Kennard, R. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems, American Statistical Association, 12, 55-67. 7. Osborne, M., Presnell, B. and Turlach, B. (2000) On the LASSO and its dual, Journal of Computational and Graphical Statistics, 9, 319–337. 8. Sill, M.,Hielscher, T. A and Becker M. (2014) Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, 62, 1-22. 9. Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, 58, 267-288. 10. Zhao, X. (2008) Lasso and Its Applications, University of Minnesota Duluth, 4-17. 11. Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net, Journal of the Royal Statistical Society, 67, 301-320. 二、中文文獻 1. 全民人體力學健康教室,淺談三種脊椎歪斜。 2. 賈金柱,高等統計選講,高等統計入門分析,2.2 節Duality。 |
Description | 碩士 國立政治大學 統計學系 103354015 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#G0103354015 |
Type | thesis |
dc.contributor.advisor | 薛慧敏 | zh_TW |
dc.contributor.author (Authors) | 鍾其昀 | zh_TW |
dc.creator (作者) | 鍾其昀 | zh_TW |
dc.date (日期) | 2017 | en_US |
dc.date.accessioned | 8-Feb-2017 16:32:56 (UTC+8) | - |
dc.date.available | 8-Feb-2017 16:32:56 (UTC+8) | - |
dc.date.issued (上傳時間) | 8-Feb-2017 16:32:56 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0103354015 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/106389 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description (描述) | 103354015 | zh_TW |
dc.description.abstract (摘要) | 隨著資料量龐大,解釋變數過多的時代來臨,變數選取將是我們重要的議題。在線性迴歸分析中,傳統採用最小平方法(least square method)來估計模型,然而得到的迴歸係數估計值的偏差雖然比較小,但其變異程度卻較大,且預測得也不夠精準。若是考慮對迴歸係數加入限制式時,則估計量將與原本的最小平方法有何差異,偏差與標準差之間的比較。接著將此估計法應用至羅吉斯迴模型時,利用三筆實際資料,比較與最大概似估計(maximum likelihood estimate,簡稱MLE)法建立的迴歸模型及預測準確率,並於模擬實驗中,以表格及圖型呈現兩方法在估計量上的差異。 | zh_TW |
dc.description.tableofcontents | 1. 緒論..............................................1 2. 研究方法............................................3 2.1 線性迴歸之LASSO....................................3 2.2 羅吉斯迴歸之LASSO..................................14 3. 實例資料分析........................................15 3.1 脊椎後凸的預測.....................................15 3.2 貓與狗影像的辨識...................................18 3.3 鐵達尼號倖存者的預測................................21 4. 模擬實驗...........................................24 4.1 模擬流程與參數設計..................................24 4.2 估計量的比較.......................................25 5. 結論.............................................49 參考文獻..............................................50 附錄一(2.3)之推導證明..................................51 附錄二(2.3)之推導證明..................................52 | zh_TW |
dc.format.extent | 934999 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0103354015 | en_US |
dc.subject (關鍵詞) | 最小平方法 | zh_TW |
dc.subject (關鍵詞) | 最大概似估計 | zh_TW |
dc.title (題名) | LASSO於羅吉斯迴歸模型之估計的應用 | zh_TW |
dc.title (題名) | Application of LASSO Estimation of a Logistic Regression Model | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | 一、英文文獻 1. Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, 215-244. 2. Breiman, L. (1995) Better Subset Regression Using the Nonnegative Garrotte, American Statistical Association, 37, 373-384. 3. Breiman, L. and Spector P. (1992) Submodel Selection and Evaluation in Regression. The X-Random Case, International Statistical Review, 60, 291-319. 4. Dalal, N. Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection, http://lear.inrialpes.fr/. 5. Friedl, I., Tilg, N. (1995) Variance estimates in logistic regression using the bootstrap, Communications in Statistic-Theory and Methods, 24(2), 473-486. 6. Hoerl, E. and Kennard, R. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems, American Statistical Association, 12, 55-67. 7. Osborne, M., Presnell, B. and Turlach, B. (2000) On the LASSO and its dual, Journal of Computational and Graphical Statistics, 9, 319–337. 8. Sill, M.,Hielscher, T. A and Becker M. (2014) Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, 62, 1-22. 9. Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, 58, 267-288. 10. Zhao, X. (2008) Lasso and Its Applications, University of Minnesota Duluth, 4-17. 11. Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net, Journal of the Royal Statistical Society, 67, 301-320. 二、中文文獻 1. 全民人體力學健康教室,淺談三種脊椎歪斜。 2. 賈金柱,高等統計選講,高等統計入門分析,2.2 節Duality。 | zh_TW |