學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 LASSO於羅吉斯迴歸模型之估計的應用
Application of LASSO Estimation of a Logistic Regression Model作者 鍾其昀 貢獻者 薛慧敏
鍾其昀關鍵詞 最小平方法
最大概似估計日期 2017 上傳時間 8-二月-2017 16:32:56 (UTC+8) 摘要 隨著資料量龐大,解釋變數過多的時代來臨,變數選取將是我們重要的議題。在線性迴歸分析中,傳統採用最小平方法(least square method)來估計模型,然而得到的迴歸係數估計值的偏差雖然比較小,但其變異程度卻較大,且預測得也不夠精準。若是考慮對迴歸係數加入限制式時,則估計量將與原本的最小平方法有何差異,偏差與標準差之間的比較。接著將此估計法應用至羅吉斯迴模型時,利用三筆實際資料,比較與最大概似估計(maximum likelihood estimate,簡稱MLE)法建立的迴歸模型及預測準確率,並於模擬實驗中,以表格及圖型呈現兩方法在估計量上的差異。 參考文獻 一、英文文獻1. Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, 215-244.2. Breiman, L. (1995) Better Subset Regression Using the Nonnegative Garrotte, American Statistical Association, 37, 373-384.3. Breiman, L. and Spector P. (1992) Submodel Selection and Evaluation in Regression. The X-Random Case,International Statistical Review, 60, 291-319.4. Dalal, N. Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection, http://lear.inrialpes.fr/.5. Friedl, I., Tilg, N. (1995) Variance estimates in logistic regression using the bootstrap, Communications in Statistic-Theory and Methods, 24(2), 473-486.6. Hoerl, E. and Kennard, R. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems, American Statistical Association, 12, 55-67.7. Osborne, M., Presnell, B. and Turlach, B. (2000) On the LASSO and its dual, Journal of Computational and Graphical Statistics, 9, 319–337.8. Sill, M.,Hielscher, T. A and Becker M. (2014) Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, 62, 1-22.9. Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, 58, 267-288.10. Zhao, X. (2008) Lasso and Its Applications, University of Minnesota Duluth, 4-17.11. Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net, Journal of the Royal Statistical Society, 67, 301-320.二、中文文獻1. 全民人體力學健康教室,淺談三種脊椎歪斜。2. 賈金柱,高等統計選講,高等統計入門分析,2.2 節Duality。 描述 碩士
國立政治大學
統計學系
103354015資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103354015 資料類型 thesis dc.contributor.advisor 薛慧敏 zh_TW dc.contributor.author (作者) 鍾其昀 zh_TW dc.creator (作者) 鍾其昀 zh_TW dc.date (日期) 2017 en_US dc.date.accessioned 8-二月-2017 16:32:56 (UTC+8) - dc.date.available 8-二月-2017 16:32:56 (UTC+8) - dc.date.issued (上傳時間) 8-二月-2017 16:32:56 (UTC+8) - dc.identifier (其他 識別碼) G0103354015 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/106389 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 103354015 zh_TW dc.description.abstract (摘要) 隨著資料量龐大,解釋變數過多的時代來臨,變數選取將是我們重要的議題。在線性迴歸分析中,傳統採用最小平方法(least square method)來估計模型,然而得到的迴歸係數估計值的偏差雖然比較小,但其變異程度卻較大,且預測得也不夠精準。若是考慮對迴歸係數加入限制式時,則估計量將與原本的最小平方法有何差異,偏差與標準差之間的比較。接著將此估計法應用至羅吉斯迴模型時,利用三筆實際資料,比較與最大概似估計(maximum likelihood estimate,簡稱MLE)法建立的迴歸模型及預測準確率,並於模擬實驗中,以表格及圖型呈現兩方法在估計量上的差異。 zh_TW dc.description.tableofcontents 1. 緒論..............................................12. 研究方法............................................32.1 線性迴歸之LASSO....................................32.2 羅吉斯迴歸之LASSO..................................143. 實例資料分析........................................153.1 脊椎後凸的預測.....................................153.2 貓與狗影像的辨識...................................183.3 鐵達尼號倖存者的預測................................214. 模擬實驗...........................................244.1 模擬流程與參數設計..................................244.2 估計量的比較.......................................255. 結論.............................................49參考文獻..............................................50附錄一(2.3)之推導證明..................................51附錄二(2.3)之推導證明..................................52 zh_TW dc.format.extent 934999 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103354015 en_US dc.subject (關鍵詞) 最小平方法 zh_TW dc.subject (關鍵詞) 最大概似估計 zh_TW dc.title (題名) LASSO於羅吉斯迴歸模型之估計的應用 zh_TW dc.title (題名) Application of LASSO Estimation of a Logistic Regression Model en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 一、英文文獻1. Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, 215-244.2. Breiman, L. (1995) Better Subset Regression Using the Nonnegative Garrotte, American Statistical Association, 37, 373-384.3. Breiman, L. and Spector P. (1992) Submodel Selection and Evaluation in Regression. The X-Random Case,International Statistical Review, 60, 291-319.4. Dalal, N. Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection, http://lear.inrialpes.fr/.5. Friedl, I., Tilg, N. (1995) Variance estimates in logistic regression using the bootstrap, Communications in Statistic-Theory and Methods, 24(2), 473-486.6. Hoerl, E. and Kennard, R. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems, American Statistical Association, 12, 55-67.7. Osborne, M., Presnell, B. and Turlach, B. (2000) On the LASSO and its dual, Journal of Computational and Graphical Statistics, 9, 319–337.8. Sill, M.,Hielscher, T. A and Becker M. (2014) Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, 62, 1-22.9. Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, 58, 267-288.10. Zhao, X. (2008) Lasso and Its Applications, University of Minnesota Duluth, 4-17.11. Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net, Journal of the Royal Statistical Society, 67, 301-320.二、中文文獻1. 全民人體力學健康教室,淺談三種脊椎歪斜。2. 賈金柱,高等統計選講,高等統計入門分析,2.2 節Duality。 zh_TW