學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 應用Landsat影像於都市碳吸存效益之分析
Application of Landsat Image in Urban Carbon Sequestration Analysis
作者 蔡榮恩
Tsai, Jung En
貢獻者 詹進發
Jan, Jihn Fa
蔡榮恩
Tsai, Jung En
關鍵詞 碳吸存
植生淨初級生產力
大地衛星
環境變遷
遙測技術
Carbon Sequestration
Net Primary Productivity (NPP)
Landsat
Environmental changes
Remote sensing technology
日期 2016
上傳時間 8-Feb-2017 16:46:03 (UTC+8)
摘要 自工業革命後,隨著科技的進步,人口、經濟、醫療技術皆快速發展,也因人類需求的增加而大量燃燒化石燃料,大規模的砍伐熱帶雨林,導致大氣中二氧化碳大量增加,進而衍生溫室效應的發生,甚至造成全球氣候變遷。
在全球暖化的狀態下,聯合國氣候變化綱要公約與京都議定書中都明確肯定森林可固定主要溫室氣體二氧化碳,由於森林具備吸收和儲存二氧化碳的能力,其對於生態系統中的碳循環功能扮演重要的角色。若能有效監控森林資源,便能管理溫室氣體,且能提出有效的控管方式。
而本研究將應用遙測技術於碳吸存與環境變化的監測,透過美國大地衛星影像(Landsat)進行不同時期與區域之碳吸存的評估,與以往研究之最大差異為可進行大尺度與多時期的碳吸存評估,並且達到經濟、準確、有效提升效率之目標。
本研究根據光能利用率(Light use efficiency)為基礎模型,計算2005-2010之植生淨初級生產量(Net Primary Productivity, NPP),且配合不同的研究區域:台北、高雄,進一步探討不同的氣候條件與土地利用的條件下,其差異性對於NPP之影響。
成果顯示,在不同環境條件下碳吸存能力受到氣候條件影響最大,且在資料具有缺漏狀態下,依然能反映不同區域之趨勢,雖無法有效評估年總量,但仍可供評估區域性碳吸存能力之趨勢。
Since the industrial revolution, with the rapid progress of science and technology, population, economy, and medical technology also grow rapidly. Because of increased human demand, coupled with burning lots of fossil fuels, and large-scale felling of tropical rain forests, which result in a significant increase in atmospheric carbon dioxide, and then trigger the greenhouse effect to occur, hence causing global climate change.
Under the global warming condition, the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol (KC) both clearly affirmed that forests can fix the main greenhouse gas—carbon dioxide. Because forests have the ability to absorb and store carbon dioxide, they plan an important role in carbon cycle function for ecosystem. If we can effectively monitor forest resources, we will be able to manage greenhouse gases, and can come up with effective control methods.
In the present study, we will use remote sensing technology to monitor carbon sequestration and environmental changes. Using Landsat images, we assessed carbon sequestration of different time periods and areas. The biggest difference between this study and previous researches is that large-scale and multi-temporal carbon sequestration assessment can be done, and the goals of economic, accurate, and increasing efficiency can be achieved.
In this study, the Net Primary Productivity (NPP) of 2005-2010 was calculated based on the light use efficiency model. By comparing the results of different research areas—Taipei and Kaohsiung, the effects of different climatic conditions and land use conditions on NPP was investigated.
The results show that, under different environmental conditions, the carbon sequestration capacity is affected the most by climatic conditions. Furthermore, in the absence of data, it still can reflect the trend of different regions. Although not being able to effectively assess the total amount of a year, it still can be used to assess the trend of regional carbon sequestration capacity.
參考文獻 王瑞閔,2007,「台灣國有林地森林碳吸存估算方法之探討」,國立臺灣大學生物資源暨農學院森林環境暨資源學研究所碩士論文:台北。
中華民國地區發展學會,2008,「97年度高雄縣農地資源空間規劃計畫」。
朱文泉、潘耀忠、張錦水,2007,「中國陸地植被淨初級生產力遙感估算」,『植物生態學報』,413-424。
江博能、王亞男、梁治文,2010,「臺灣中部地區光臘樹人工林生長量與碳存量之研究」,『臺灣大學生物資源暨農學院實驗林研究報告』,24(3):185-194。
李國忠、林俊成、陳麗琴,2000,「台灣杉人工林碳吸存潛力及其成本效益分析」,『臺灣林業科學』,15(1):115-123。
周廣勝、張新時,1996,「中國氣候-植被關係初探」,『植物生態學』,113-119。
林映儒、鄭智馨、曾聰堯,2011,「台灣平地造林之碳吸存潛能:以長期果園廢耕地與造林地為例」,中華林學季刊,44(4):567-588。
林務局農林航空測量所,2010,「遙測技術在森林健康、生長量與碳吸存之研究」。
林國銓、杜清澤、黃菊美,2010,「光蠟樹人工林碳貯存量和吸存量之估算」,『中華林學季刊』,43(2):261-276。
林國銓、黃菊美、王巧萍、張乃航,2004,「六龜台灣杉人工林碳和氮的累積和分布」,『臺灣林業科學』,19(3):225-235。
邱志明、唐盛林、鍾智昕、林振榮,2011,「紅檜人工林生物量和不同疏伐策略對二氧化碳吸存之效應」,『中華林學季刊』,44(3):385-400。
邱育慈,2006,「走進低碳社會,台灣準備好了嗎?」,『科學人』,10月:34-40。
洪千祐,2014,「以過去發表資料為基礎分析臺灣重要人工林和竹林之碳吸存量」,國立中興大學森林學研究所碩士論文:台中。
胡瀞予,2010,「應用MODIS影像數據估測台灣陸域初級生產量」,國立屏東科技大學森林學研究所碩士論文:屏東。
陳信宏,2011,「遙測技術於台北市都市綠地之碳吸存監測研究」,中國文化大學景觀學研究所碩士倫文:台北市。
廖宜緯、陳美光、陳羽康、鍾玉龍
、吳守從,2011a,「台糖公司屏東縣平地造林碳貯存量調查」,『中華林學季刊』,44(3):373-383。
廖宜緯、陳美光、陳羽康、鍾玉龍、吳守從,2011b,「應用SPOT衛星影像推估台糖公司屏東縣平地造林碳貯存」,『航測及遙測學刊』,16(2): 101-113。
潘國樑,2009,『遙測學大綱:遙測概念、原理與影像判釋技術 (Vol. 2)』,臺北市: 科技圖書。
鄭祈全,2014,「全台國有林淨初及生產力之遙測估算研究」。論文發表於〈第33屆測量及空間資訊研討會〉,國立台灣大學、內政部國土測繪中心:台北,民國103年9月4日至5日。
謝漢欽、汪大雄、王慈憶、張鈞媛、邱志明,2011,「應用福衛二號影像與地面樣區資料於光蠟樹平地造林地之碳吸存推估」,『航測及遙測學刊』, 16(2):79-99。
AGBM, 1997, Kyoto Protocol to The United Nations Framework Convention on Climate Change.
Blaney H, F., and Criddle, W. D., 1950, “Determining water requirements in irrigated area from climatological irrigation data”, Soil conservation Service, No. 96:48.
Bian, J., Li, A., and Deng, W., 2010, “Estimation and analysis of net primary Productivity of Ruoergai wetland in China for the recent 10 years based on remote sensing”, Procedia Environmental Sciences, 2: 288-301.
Chao, Z., Huanfeng, S., and Liangpei, Z., 2013, “Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method”, Remote Sensing of Environment: 131, 182-194.
Chander, G., Markham, B. L., and Helder, D. L., 2009, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment: 113(5), 893-903.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J., 2007, “Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget”, Ecosystems: 10(1), 172-185.
Cramer, W., Kicklighter, D. W., Bondeau, A., Iii, B. M., Churkina, G., Nemry, B., Ruimy, A., and Schloss, A. L., 1999, “Comparing global models of terrestrial net primary productivity (NPP): overview and key results”, Global Change Biology, 5(S1): 1-15.
Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V., and Hughes, M. K., 2003, “Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks”, Remote Sensing of Environment, 84(3): 393-410.
Field, C. B., Randerson, J. T., and Malmström, C. M., 1995, “Global net primary production: Combining ecology and remote sensing”, Remote Sensing of Environment, 51(1): 74-88.
Hatfield, J. L., Asrar, G., and Kanemasu, E. T., 1984, “Intercepted photosynthetically active radiation estimated by spectral reflectance”, Remote Sensing of Environment, 14(1): 65-75.
IPCC, 2003, Good practice for land use, land-use change and forestry, Hayama: Japan.
IPCC, 2014, Climate change 2014 :synthesis report, Geneva: Switzerland.
Jin, C., Xiaolin, Z., James, E, V., Feng, G., and Suming, J., 2011, “A simple and effective method for filling gaps in Landsat ETM+ SLC-off images”, Remote Sensing of Environment: 115, 1053-1064.
Knorr, W., and Heimann, M., 1995, “Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model”, Tellus B: 47(4), 471-489.
Lieth, H., 1975, “Modeling the Primary Productivity of the World.” pp. 237-263 in Primary Productivity of the Biosphere, edited by Lieth, H. and Whittaker, R. H., Berlin Heidelberg: Springer Berlin Heidelberg.
Los, S. O., Justice, C. O., and Tucker, C. J., 1994, “A global 1° by 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data”, International Journal of Remote Sensing: 15(17), 3493-3518.
Molles, M. C., and Cahill, J. F., 2007, Ecology: Concepts and Applications(2e):435-436.
Monteith, J. L., 1972, “Solar Radiation and Productivity in Tropical Ecosystems”, Journal of Applied Ecology: 9(3), 747-766.
Monteith, J. L., and Moss, C. J., 1977, “Climate and the Efficiency of Crop Production in Britain” Biological Sciences: 281(980), 277-294.
Obsomer, V., Titeux, N., Vancustem, C., Duveiller, G., Pekel, J.F., Connor, S., Ceccato, P., and Coosemans, M, 2013, “From Anopheles to Spatial Surveillance: A Roadmap Through a Multidisciplinary Challenge.” chapter.14 in Anopheles mosquitoes - New insights into malaria vectors, edited by Sylvie Manguin.
Pachavo, G., and Murwira, A., 2014, “Remote sensing net primary productivity (NPP) estimation with the aid of GIS modelled shortwave radiation (SWR) in a Southern African Savanna”, International Journal of Applied Earth Observation and Geoinformation: 30, 217-226.
Pan, S., Tian, H., Dangal, S. R. S., Ouyang, Z., Tao, B., Ren, W., Lu, C., and Running, S., 2014, “Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation”, Advances in Meteorology: 2014, 17.
Peng, D.-l., Huang, J.f., Huete, A. R., Yang, T.M., Gao, P., Chen, Y.C., Chen, H., Li, J., and Liu, Z.Y., 2010, “Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data. Journal of Zhejiang University”, Science. B: 11(4), 275-285.
Potter, C., Gross, P., Genovese, V., and Smith, M.L., 2007, “Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data”, Carbon Balance and Management: 2, 9-9.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and Klooster, S. A., 1993, “Terrestrial ecosystem production: A process model based on global satellite and surface data”, Global Biogeochemical Cycles: 7(4), 811-841.
Prince, S. D., 1991, “A model of regional primary production for use with coarse resolution satellite data”, International Journal of Remote Sensing: 12(6), 1313-1330.
Prince, S. D. and Goward, S. N., 1995. “Global Primary Production: A Remote Sensing Approach”, Journal of Biogeography: 22(4/5), 815-835.
Riebeek, H., 2011, The Carbon Cycle : Feauture Articles NASA Earth Observatory.
Ruimy, A., Kergoat, L., Field, C. B., and Saugier, B. 1996. The use of CO2 flux measurements in models of the global terrestrial carbon budget, Global Change Biology: 2(3), 287-296.
Scott, J.G., Stephen, D. P., Samuel, N. G., Michelle, M. T., Jennifer, S., 1999, “Satellite remote sensing of primary production: an improved production efficiency modeling approach”, Ecological Modelling: 122(3), 239-255.
Scott, J.G., Stephen, D. P., 1996, “Remote sensing of net primary production in boreal forest stands”, Agricultural and Forest Meteorology:78, 149-179.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L., 1996, “A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS” Part I: Model Formulation. Journal of Climate: 9(4), 676-705.
USGS, 2003, Preliminary Assessment of the Value of Landsat 7 ETM+ Data following Scan Line Corrector Malfunction.
U.S. Census Bureau, 2016, An aging world:2015 international Population Reports, Washington: DC.
Wigley, T. M. L., and Schimel, D. S., 2005, The Carbon Cycle, Cambridge University Press.
交通部中央氣象局,2016,颱風資料庫。
http://rdc28.cwb.gov.tw/,取用日期:2016年11月10號。
交通部中央氣象局,2012,臺灣氣候特徵簡介。http://www.cwb.gov.tw/V7/climate/climate_info/taiwan_climate/taiwan_1.html,取用日期:2016年11月10號。
台北市政府觀光傳播局,2015,台北市介紹。
http://www.travel.taipei/frontsite/tw/cms/cmsAction.do?method=goCMSDetail&menuId=20110&contentId=384,取用日期:2016年11月10號。
Steve G., (1999, September 17). Remote Sensing. Retrieved February 12, 2015, from NASA Observatorium on the World Wide Web:http://earthobservatory.nasa.gov/Features/RemoteSensing/remote.php
USGS(U.S. Geological Survey)(2013). Filling the Gaps to use in Scientific Analysis. Retrieved February 12, 2015, from USGS on the World Wide Web:https://landsat.usgs.gov/filling-gaps-use-scientific-analysis
USGS(U.S. Geological Survey)(2012).SLC-off Products : Background .Retrieved February 12, 2015, from USGS on the World Wide Web: https://landsat.usgs.gov/slc-products-background
描述 碩士
國立政治大學
地政學系
103257030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1032570301
資料類型 thesis
dc.contributor.advisor 詹進發zh_TW
dc.contributor.advisor Jan, Jihn Faen_US
dc.contributor.author (Authors) 蔡榮恩zh_TW
dc.contributor.author (Authors) Tsai, Jung Enen_US
dc.creator (作者) 蔡榮恩zh_TW
dc.creator (作者) Tsai, Jung Enen_US
dc.date (日期) 2016en_US
dc.date.accessioned 8-Feb-2017 16:46:03 (UTC+8)-
dc.date.available 8-Feb-2017 16:46:03 (UTC+8)-
dc.date.issued (上傳時間) 8-Feb-2017 16:46:03 (UTC+8)-
dc.identifier (Other Identifiers) G1032570301en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/106453-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 103257030zh_TW
dc.description.abstract (摘要) 自工業革命後,隨著科技的進步,人口、經濟、醫療技術皆快速發展,也因人類需求的增加而大量燃燒化石燃料,大規模的砍伐熱帶雨林,導致大氣中二氧化碳大量增加,進而衍生溫室效應的發生,甚至造成全球氣候變遷。
在全球暖化的狀態下,聯合國氣候變化綱要公約與京都議定書中都明確肯定森林可固定主要溫室氣體二氧化碳,由於森林具備吸收和儲存二氧化碳的能力,其對於生態系統中的碳循環功能扮演重要的角色。若能有效監控森林資源,便能管理溫室氣體,且能提出有效的控管方式。
而本研究將應用遙測技術於碳吸存與環境變化的監測,透過美國大地衛星影像(Landsat)進行不同時期與區域之碳吸存的評估,與以往研究之最大差異為可進行大尺度與多時期的碳吸存評估,並且達到經濟、準確、有效提升效率之目標。
本研究根據光能利用率(Light use efficiency)為基礎模型,計算2005-2010之植生淨初級生產量(Net Primary Productivity, NPP),且配合不同的研究區域:台北、高雄,進一步探討不同的氣候條件與土地利用的條件下,其差異性對於NPP之影響。
成果顯示,在不同環境條件下碳吸存能力受到氣候條件影響最大,且在資料具有缺漏狀態下,依然能反映不同區域之趨勢,雖無法有效評估年總量,但仍可供評估區域性碳吸存能力之趨勢。
zh_TW
dc.description.abstract (摘要) Since the industrial revolution, with the rapid progress of science and technology, population, economy, and medical technology also grow rapidly. Because of increased human demand, coupled with burning lots of fossil fuels, and large-scale felling of tropical rain forests, which result in a significant increase in atmospheric carbon dioxide, and then trigger the greenhouse effect to occur, hence causing global climate change.
Under the global warming condition, the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol (KC) both clearly affirmed that forests can fix the main greenhouse gas—carbon dioxide. Because forests have the ability to absorb and store carbon dioxide, they plan an important role in carbon cycle function for ecosystem. If we can effectively monitor forest resources, we will be able to manage greenhouse gases, and can come up with effective control methods.
In the present study, we will use remote sensing technology to monitor carbon sequestration and environmental changes. Using Landsat images, we assessed carbon sequestration of different time periods and areas. The biggest difference between this study and previous researches is that large-scale and multi-temporal carbon sequestration assessment can be done, and the goals of economic, accurate, and increasing efficiency can be achieved.
In this study, the Net Primary Productivity (NPP) of 2005-2010 was calculated based on the light use efficiency model. By comparing the results of different research areas—Taipei and Kaohsiung, the effects of different climatic conditions and land use conditions on NPP was investigated.
The results show that, under different environmental conditions, the carbon sequestration capacity is affected the most by climatic conditions. Furthermore, in the absence of data, it still can reflect the trend of different regions. Although not being able to effectively assess the total amount of a year, it still can be used to assess the trend of regional carbon sequestration capacity.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
一、 研究動機 2
二、 研究目的 3
第三節 文章架構 4
第二章 文獻回顧 7
第一節 全球暖化與各國協定 7
一、 IPCC與全球暖化 7
二、 京都議定書與全球暖化 9
第二節 碳吸存相關研究 11
一、 森林資源與生態系碳循環 11
二、 國內碳吸存相關研究 15
第三節 應用遙測於碳吸存之研究 19
一、 遙感探測 19
二、 淨初級生產力 20
三、 光能利用率模型與遙測應用 21
第三章 研究材料與方法 29
第一節 研究區域 29
一、 大台北行政區 29
二、 高雄行政區 29
第二節 研究資料 30
一、 衛星影像 30
二、 土地分類資料 34
三、 氣象資料 36
第三節 研究方法與流程 39
一、 最大值合成法 41
二、 Landsat 7 ETM+影像填補 42
三、 Landsat 衛星影像前處理 44
四、 碳吸存遙測估算 48
第四章 研究成果 53
第一節 土地分類 53
一、 土地分類精度 53
二、 土地使用分類比較 61
第二節 碳吸存與氣象資料 69
一、 氣象資料分析 69
二、 碳吸存分析 77
第五章 結論與建議 89
第一節 結論 89
一、 半自動化處理 89
二、 大台北行政區與高雄行政區土地利用變化 89
三、 大台北行政區與高雄行政區氣候條件 90
四、 碳吸存整體分析 90
第二節 建議 91
一、 Landsat影像處理 91
二、 碳吸存未來研究方向與整體建議 91
參考文獻 93
一、 中文參考文獻 93
二、 外文參考文獻 95
三、 網頁參考文獻 99
zh_TW
dc.format.extent 4947239 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1032570301en_US
dc.subject (關鍵詞) 碳吸存zh_TW
dc.subject (關鍵詞) 植生淨初級生產力zh_TW
dc.subject (關鍵詞) 大地衛星zh_TW
dc.subject (關鍵詞) 環境變遷zh_TW
dc.subject (關鍵詞) 遙測技術zh_TW
dc.subject (關鍵詞) Carbon Sequestrationen_US
dc.subject (關鍵詞) Net Primary Productivity (NPP)en_US
dc.subject (關鍵詞) Landsaten_US
dc.subject (關鍵詞) Environmental changesen_US
dc.subject (關鍵詞) Remote sensing technologyen_US
dc.title (題名) 應用Landsat影像於都市碳吸存效益之分析zh_TW
dc.title (題名) Application of Landsat Image in Urban Carbon Sequestration Analysisen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 王瑞閔,2007,「台灣國有林地森林碳吸存估算方法之探討」,國立臺灣大學生物資源暨農學院森林環境暨資源學研究所碩士論文:台北。
中華民國地區發展學會,2008,「97年度高雄縣農地資源空間規劃計畫」。
朱文泉、潘耀忠、張錦水,2007,「中國陸地植被淨初級生產力遙感估算」,『植物生態學報』,413-424。
江博能、王亞男、梁治文,2010,「臺灣中部地區光臘樹人工林生長量與碳存量之研究」,『臺灣大學生物資源暨農學院實驗林研究報告』,24(3):185-194。
李國忠、林俊成、陳麗琴,2000,「台灣杉人工林碳吸存潛力及其成本效益分析」,『臺灣林業科學』,15(1):115-123。
周廣勝、張新時,1996,「中國氣候-植被關係初探」,『植物生態學』,113-119。
林映儒、鄭智馨、曾聰堯,2011,「台灣平地造林之碳吸存潛能:以長期果園廢耕地與造林地為例」,中華林學季刊,44(4):567-588。
林務局農林航空測量所,2010,「遙測技術在森林健康、生長量與碳吸存之研究」。
林國銓、杜清澤、黃菊美,2010,「光蠟樹人工林碳貯存量和吸存量之估算」,『中華林學季刊』,43(2):261-276。
林國銓、黃菊美、王巧萍、張乃航,2004,「六龜台灣杉人工林碳和氮的累積和分布」,『臺灣林業科學』,19(3):225-235。
邱志明、唐盛林、鍾智昕、林振榮,2011,「紅檜人工林生物量和不同疏伐策略對二氧化碳吸存之效應」,『中華林學季刊』,44(3):385-400。
邱育慈,2006,「走進低碳社會,台灣準備好了嗎?」,『科學人』,10月:34-40。
洪千祐,2014,「以過去發表資料為基礎分析臺灣重要人工林和竹林之碳吸存量」,國立中興大學森林學研究所碩士論文:台中。
胡瀞予,2010,「應用MODIS影像數據估測台灣陸域初級生產量」,國立屏東科技大學森林學研究所碩士論文:屏東。
陳信宏,2011,「遙測技術於台北市都市綠地之碳吸存監測研究」,中國文化大學景觀學研究所碩士倫文:台北市。
廖宜緯、陳美光、陳羽康、鍾玉龍
、吳守從,2011a,「台糖公司屏東縣平地造林碳貯存量調查」,『中華林學季刊』,44(3):373-383。
廖宜緯、陳美光、陳羽康、鍾玉龍、吳守從,2011b,「應用SPOT衛星影像推估台糖公司屏東縣平地造林碳貯存」,『航測及遙測學刊』,16(2): 101-113。
潘國樑,2009,『遙測學大綱:遙測概念、原理與影像判釋技術 (Vol. 2)』,臺北市: 科技圖書。
鄭祈全,2014,「全台國有林淨初及生產力之遙測估算研究」。論文發表於〈第33屆測量及空間資訊研討會〉,國立台灣大學、內政部國土測繪中心:台北,民國103年9月4日至5日。
謝漢欽、汪大雄、王慈憶、張鈞媛、邱志明,2011,「應用福衛二號影像與地面樣區資料於光蠟樹平地造林地之碳吸存推估」,『航測及遙測學刊』, 16(2):79-99。
AGBM, 1997, Kyoto Protocol to The United Nations Framework Convention on Climate Change.
Blaney H, F., and Criddle, W. D., 1950, “Determining water requirements in irrigated area from climatological irrigation data”, Soil conservation Service, No. 96:48.
Bian, J., Li, A., and Deng, W., 2010, “Estimation and analysis of net primary Productivity of Ruoergai wetland in China for the recent 10 years based on remote sensing”, Procedia Environmental Sciences, 2: 288-301.
Chao, Z., Huanfeng, S., and Liangpei, Z., 2013, “Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method”, Remote Sensing of Environment: 131, 182-194.
Chander, G., Markham, B. L., and Helder, D. L., 2009, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment: 113(5), 893-903.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J., 2007, “Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget”, Ecosystems: 10(1), 172-185.
Cramer, W., Kicklighter, D. W., Bondeau, A., Iii, B. M., Churkina, G., Nemry, B., Ruimy, A., and Schloss, A. L., 1999, “Comparing global models of terrestrial net primary productivity (NPP): overview and key results”, Global Change Biology, 5(S1): 1-15.
Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V., and Hughes, M. K., 2003, “Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks”, Remote Sensing of Environment, 84(3): 393-410.
Field, C. B., Randerson, J. T., and Malmström, C. M., 1995, “Global net primary production: Combining ecology and remote sensing”, Remote Sensing of Environment, 51(1): 74-88.
Hatfield, J. L., Asrar, G., and Kanemasu, E. T., 1984, “Intercepted photosynthetically active radiation estimated by spectral reflectance”, Remote Sensing of Environment, 14(1): 65-75.
IPCC, 2003, Good practice for land use, land-use change and forestry, Hayama: Japan.
IPCC, 2014, Climate change 2014 :synthesis report, Geneva: Switzerland.
Jin, C., Xiaolin, Z., James, E, V., Feng, G., and Suming, J., 2011, “A simple and effective method for filling gaps in Landsat ETM+ SLC-off images”, Remote Sensing of Environment: 115, 1053-1064.
Knorr, W., and Heimann, M., 1995, “Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model”, Tellus B: 47(4), 471-489.
Lieth, H., 1975, “Modeling the Primary Productivity of the World.” pp. 237-263 in Primary Productivity of the Biosphere, edited by Lieth, H. and Whittaker, R. H., Berlin Heidelberg: Springer Berlin Heidelberg.
Los, S. O., Justice, C. O., and Tucker, C. J., 1994, “A global 1° by 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data”, International Journal of Remote Sensing: 15(17), 3493-3518.
Molles, M. C., and Cahill, J. F., 2007, Ecology: Concepts and Applications(2e):435-436.
Monteith, J. L., 1972, “Solar Radiation and Productivity in Tropical Ecosystems”, Journal of Applied Ecology: 9(3), 747-766.
Monteith, J. L., and Moss, C. J., 1977, “Climate and the Efficiency of Crop Production in Britain” Biological Sciences: 281(980), 277-294.
Obsomer, V., Titeux, N., Vancustem, C., Duveiller, G., Pekel, J.F., Connor, S., Ceccato, P., and Coosemans, M, 2013, “From Anopheles to Spatial Surveillance: A Roadmap Through a Multidisciplinary Challenge.” chapter.14 in Anopheles mosquitoes - New insights into malaria vectors, edited by Sylvie Manguin.
Pachavo, G., and Murwira, A., 2014, “Remote sensing net primary productivity (NPP) estimation with the aid of GIS modelled shortwave radiation (SWR) in a Southern African Savanna”, International Journal of Applied Earth Observation and Geoinformation: 30, 217-226.
Pan, S., Tian, H., Dangal, S. R. S., Ouyang, Z., Tao, B., Ren, W., Lu, C., and Running, S., 2014, “Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation”, Advances in Meteorology: 2014, 17.
Peng, D.-l., Huang, J.f., Huete, A. R., Yang, T.M., Gao, P., Chen, Y.C., Chen, H., Li, J., and Liu, Z.Y., 2010, “Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data. Journal of Zhejiang University”, Science. B: 11(4), 275-285.
Potter, C., Gross, P., Genovese, V., and Smith, M.L., 2007, “Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data”, Carbon Balance and Management: 2, 9-9.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and Klooster, S. A., 1993, “Terrestrial ecosystem production: A process model based on global satellite and surface data”, Global Biogeochemical Cycles: 7(4), 811-841.
Prince, S. D., 1991, “A model of regional primary production for use with coarse resolution satellite data”, International Journal of Remote Sensing: 12(6), 1313-1330.
Prince, S. D. and Goward, S. N., 1995. “Global Primary Production: A Remote Sensing Approach”, Journal of Biogeography: 22(4/5), 815-835.
Riebeek, H., 2011, The Carbon Cycle : Feauture Articles NASA Earth Observatory.
Ruimy, A., Kergoat, L., Field, C. B., and Saugier, B. 1996. The use of CO2 flux measurements in models of the global terrestrial carbon budget, Global Change Biology: 2(3), 287-296.
Scott, J.G., Stephen, D. P., Samuel, N. G., Michelle, M. T., Jennifer, S., 1999, “Satellite remote sensing of primary production: an improved production efficiency modeling approach”, Ecological Modelling: 122(3), 239-255.
Scott, J.G., Stephen, D. P., 1996, “Remote sensing of net primary production in boreal forest stands”, Agricultural and Forest Meteorology:78, 149-179.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L., 1996, “A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS” Part I: Model Formulation. Journal of Climate: 9(4), 676-705.
USGS, 2003, Preliminary Assessment of the Value of Landsat 7 ETM+ Data following Scan Line Corrector Malfunction.
U.S. Census Bureau, 2016, An aging world:2015 international Population Reports, Washington: DC.
Wigley, T. M. L., and Schimel, D. S., 2005, The Carbon Cycle, Cambridge University Press.
交通部中央氣象局,2016,颱風資料庫。
http://rdc28.cwb.gov.tw/,取用日期:2016年11月10號。
交通部中央氣象局,2012,臺灣氣候特徵簡介。http://www.cwb.gov.tw/V7/climate/climate_info/taiwan_climate/taiwan_1.html,取用日期:2016年11月10號。
台北市政府觀光傳播局,2015,台北市介紹。
http://www.travel.taipei/frontsite/tw/cms/cmsAction.do?method=goCMSDetail&menuId=20110&contentId=384,取用日期:2016年11月10號。
Steve G., (1999, September 17). Remote Sensing. Retrieved February 12, 2015, from NASA Observatorium on the World Wide Web:http://earthobservatory.nasa.gov/Features/RemoteSensing/remote.php
USGS(U.S. Geological Survey)(2013). Filling the Gaps to use in Scientific Analysis. Retrieved February 12, 2015, from USGS on the World Wide Web:https://landsat.usgs.gov/filling-gaps-use-scientific-analysis
USGS(U.S. Geological Survey)(2012).SLC-off Products : Background .Retrieved February 12, 2015, from USGS on the World Wide Web: https://landsat.usgs.gov/slc-products-background
zh_TW