Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 基於歌詞文本分析技術探討音樂情緒辨識之方法研究
Exploring Music Emotion Recognition via Textual Analysis on Song Lyrics作者 陳禔多 貢獻者 蔡銘峰
陳禔多關鍵詞 音樂情緒辨識 日期 2017 上傳時間 1-Mar-2017 17:14:04 (UTC+8) 摘要 音樂是一種情感豐富的媒體。即使跨越了數個世紀,人們還是會對同一首歌曲的情緒表達有類似的理解。然而在現今的數位音樂資料庫可以看出,我們是不可能憑著人力完成數量如此龐大的音樂情緒辨識,也因此期待電腦可以協助完成如此繁重的工作。隨著機器學習的發展,電腦逐漸可以透過統計模型與數學模型判斷與辨識一些並未事先提供規則的資料,而無法言傳的音樂情緒也得以有機會交由電腦辨識、分類。雖然目前有許多透過訊號處理技術進行的音樂辨識研究,但是透過歌詞文本的辨識卻是相對少見,使用的特徵也多侷限於通用的文字資訊。本研究以音訊特徵為基礎,從不同的歌詞文本資訊出發,透過分析歌詞文本進行歌曲情緒辨識,提供更多優化的參考資訊,藉以提升歌曲於交流、表達、推薦等互動的功能性與準確性。實驗結果發現,歌詞文本資訊對於歌曲的正負面情緒辨識確實有相當好的表現,而對於特定分類的限制則是值得更多透過不同自然語言處理的方法強化的。 參考文獻 [1] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. K´egl. Aggregate features andadaboost for music classification. Machine Learning, 65(2-3):473–484, 2006.[2] M. M. Bradley and P. J. Lang. Affective norms for english words (anew): Instructionmanual and affective ratings. Technical report, Technical Report C-1, The Centerfor Research in Psychophysiology, University of Florida, 1999.[3] M. Brysbaert and B. New. Moving beyond kuˇcera and francis: A critical evaluationof current word frequency norms and the introduction of a new and improved wordfrequency measure for american english. Behavior Research Methods, 41(4):977–990, 2009.[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACMTransactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Softwareavailable at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.[6] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource foropinion mining. In Proceedings of the 5th Conference on Language Resources andEvaluation, pages 417–422, 2006.[7] Y. Feng, Y. Zhuang, and Y. Pan. Popular music retrieval by detecting mood. InProceedings of the 26th Annual International ACM SIGIR Conference on Researchand Development in Informaion Retrieval, pages 375–376. ACM, 2003.[8] S. Hallam, I. Cross, and M. Thaut. Oxford handbook of music psychology. OxfordUniversity Press, 2008.[9] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22ndAnnual International ACM SIGIR Conference on Research and Development in InformationRetrieval, pages 50–57. ACM, 1999.[10] X. Hu and J. S. Downie. Improving mood classification in music digital libraries bycombining lyrics and audio. In Proceedings of the 10th Annual Joint Conference onDigital Libraries, pages 159–168. ACM, 2010.[11] X. Hu and J. S. Downie. When lyrics outperform audio for music mood classification:a feature analysis. In Proceedings of International Society of Music InformationRetrieval Conference, pages 1–6, 2010.[12] X. Hu, J. S. Downie, and A. F. Ehmann. Lyric text mining in music mood classification.American Music, 183(5,049):2–209, 2009.[13] Y. Hu, X. Chen, and D. Yang. Lyric-based song emotion detection with affectivelexicon and fuzzy clustering method. In Proceedings of International Society ofMusic Information Retrieval Conference, pages 123–128, 2009.[14] R. Kempter, V. Sintsova, C. Musat, and P. Pu. Emotionwatch: Visualizing finegrainedemotions in event-related tweets. In Proceedings of the 8th InternationalAAAI Conference on Weblogs and Social Media, 2014.[15] L.-W. Ku, Y.-T. Liang, and H.-H. Chen. Opinion extraction, summarization andtracking in news and blog corpora. In Proceedings of AAAI spring symposium:Computational approaches to analyzing weblogs, pages 100–107, 2006.[16] C. Laurier, J. Grivolla, and P. Herrera. Multimodal music mood classification usingaudio and lyrics. In Proceedings of the 7th International Conference on MachineLearning and Applications, pages 688–693. IEEE, 2008.[17] C. Laurier and P. Herrera. Audio music mood classification using support vectormachine.[18] J. H. Lee and J. S. Downie. Survey of music information needs, uses, and seekingbehaviours: Preliminary findings. In Proceedings of the 5th International Conferenceon Music Information Retrieval, pages 441–446, 2004.[19] T. Li and M. Ogihara. Content-based music similarity search and emotion detection.In Proceedings of IEEE International Conference on Acoustics, Speech, and SignalProcessing, volume 5, pages V–705. IEEE, 2004.[20] M. I. Mandel and D. P. Ellis. Song-level features and support vector machines formusic classification. In Proceedings of International Conference on Music InformationRetrieval, pages 594–599, 2005.[21] L. Martin and P. Pu. Prediction of helpful reviews using emotions extraction. InProceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.[22] R. Mayer, R. Neumayer, and A. Rauber. Rhyme and style features for musical genreclassification by song lyrics. 2008.[23] M. F. Mckinney and J. Breebaart. Features for audio and music classification. InProceedings of International Conference on Music Information Retrieval, 2003.[24] R. Plutchik. The nature of emotions. American Scientist, 89:344, 2001.[25] J. F. Y. W. Robert J Ellis, Zhe Xing. Quantifying lexical novelty in song lyrics.In Proceedings of the 16th International Society for Music Information RetrievalConference, 2015.[26] J. A. Russell. Affective space is bipolar. Journal of Personality and Social Psychology,37(3):345–356, 1979.[27] J. A. Russell. A circumplex model of affect. Journal of personality and socialpsychology, 39(6):1161–1178, 1980.[28] P. Saari and T. Eerola. Semantic computing of moods based on tags in social mediaof music. IEEE Transactions on Knowledge and Data Engineering, 26(10):2548–2560, 2014.[29] K. R. Scherer. What are emotions? and how can they be measured? Social ScienceInformation, 44(4):695–729, 2005.[30] V. Sintsova, C.-C. Musat, and P. Pu. Fine-grained emotion recognition in olympictweets based on human computation. In Proceedings of the 4thWorkshop on ComputationalApproaches to Subjectivity, Sentiment and Social Media Analysis, numberEPFL-CONF-197185, 2013.[31] P. J. Stone, D. C. Dunphy, and M. S. Smith. The general inquirer: A computerapproach to content analysis. 1966.[32] G. Tzanetakis. Music analysis, retrieval and synthesis of audio signals marsyas. InProceedings of the 17th ACM International Conference on Multimedia, pages 931–932. ACM, 2009.[33] M. Van Zaanen and P. Kanters. Automatic mood classification using tf*idf basedon lyrics. In Proceedings of the 11th International Society of Music InformationRetrieval Conference, pages 75–80, 2010.[34] Y.-H. Yang, Y.-C. Lin, H.-T. Cheng, I.-B. Liao, Y.-C. Ho, and H. H. Chen. Towardmulti-modal music emotion classification. In Proceedings of Pacific-Rim Conferenceon Multimedia, pages 70–79. Springer, 2008.[35] Y.-H. Yang and J.-Y. Liu. Quantitative study of music listening behavior in a socialand affective context. IEEE Transactions on Multimedia, 15(6):1304–1315, 2013. 描述 碩士
國立政治大學
資訊科學學系
101753006資料來源 http://thesis.lib.nccu.edu.tw/record/#G1017530061 資料類型 thesis dc.contributor.advisor 蔡銘峰 zh_TW dc.contributor.author (Authors) 陳禔多 zh_TW dc.creator (作者) 陳禔多 zh_TW dc.date (日期) 2017 en_US dc.date.accessioned 1-Mar-2017 17:14:04 (UTC+8) - dc.date.available 1-Mar-2017 17:14:04 (UTC+8) - dc.date.issued (上傳時間) 1-Mar-2017 17:14:04 (UTC+8) - dc.identifier (Other Identifiers) G1017530061 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/106881 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學學系 zh_TW dc.description (描述) 101753006 zh_TW dc.description.abstract (摘要) 音樂是一種情感豐富的媒體。即使跨越了數個世紀,人們還是會對同一首歌曲的情緒表達有類似的理解。然而在現今的數位音樂資料庫可以看出,我們是不可能憑著人力完成數量如此龐大的音樂情緒辨識,也因此期待電腦可以協助完成如此繁重的工作。隨著機器學習的發展,電腦逐漸可以透過統計模型與數學模型判斷與辨識一些並未事先提供規則的資料,而無法言傳的音樂情緒也得以有機會交由電腦辨識、分類。雖然目前有許多透過訊號處理技術進行的音樂辨識研究,但是透過歌詞文本的辨識卻是相對少見,使用的特徵也多侷限於通用的文字資訊。本研究以音訊特徵為基礎,從不同的歌詞文本資訊出發,透過分析歌詞文本進行歌曲情緒辨識,提供更多優化的參考資訊,藉以提升歌曲於交流、表達、推薦等互動的功能性與準確性。實驗結果發現,歌詞文本資訊對於歌曲的正負面情緒辨識確實有相當好的表現,而對於特定分類的限制則是值得更多透過不同自然語言處理的方法強化的。 zh_TW dc.description.tableofcontents 1 導論. . . . . . .12 文獻探討. . . . . . .32.1 情緒分類 . . . . . . .32.2 音樂情緒辨識. . . . . . . . . . . 32.2.1 聲音訊號. . . . . . . . . . 42.2.2 後設資料(Metadata) . . 42.2.3 歌詞文本. . . . . . . . . . 42.3 自然語言處理中的情感辨識. . . 52.4 歌詞的文字特性. . . . . . . . . . 52.5 機器學習在分類問題上之應用. . 63 研究方法. . . . . . .93.1 Support Vector Machine . . . . . . 93.1.1 實作. . . . . . . . . . . . 93.1.2 參數選用. . . . . . . . . . 103.2 特徵 . . . 103.2.1 全文單字. . . . . . . . . . 103.2.2 文本SUBTLEXus . . . . . 113.2.3 情感單字. . . . . . . . . . 113.3 資料集MER31k . . . . . . . . . . 114 實驗設計與結果分析154.1 實驗設定 154.1.1 資料集. . . . . . . . . . . 154.1.2 評估標準. . . . . . . . . . 164.2 實驗結果與分析. . . . . . . . . . 164.2.1 四象限的分類. . . . . . . 164.2.2 象限對象限的分類. . . . 165 結論. . . . . . .195.1 結果討論 . . . . . . .195.1.1 與過去研究之比較. . . . 195.1.2 特徵分析. . . . . . . . . . 195.2 未來發展方向. . . . . . . . . . . 20參考文獻. . . . . . .23 zh_TW dc.format.extent 1071564 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1017530061 en_US dc.subject (關鍵詞) 音樂情緒辨識 zh_TW dc.title (題名) 基於歌詞文本分析技術探討音樂情緒辨識之方法研究 zh_TW dc.title (題名) Exploring Music Emotion Recognition via Textual Analysis on Song Lyrics en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. K´egl. Aggregate features andadaboost for music classification. Machine Learning, 65(2-3):473–484, 2006.[2] M. M. Bradley and P. J. Lang. Affective norms for english words (anew): Instructionmanual and affective ratings. Technical report, Technical Report C-1, The Centerfor Research in Psychophysiology, University of Florida, 1999.[3] M. Brysbaert and B. New. Moving beyond kuˇcera and francis: A critical evaluationof current word frequency norms and the introduction of a new and improved wordfrequency measure for american english. Behavior Research Methods, 41(4):977–990, 2009.[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACMTransactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Softwareavailable at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.[6] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource foropinion mining. In Proceedings of the 5th Conference on Language Resources andEvaluation, pages 417–422, 2006.[7] Y. Feng, Y. Zhuang, and Y. Pan. Popular music retrieval by detecting mood. InProceedings of the 26th Annual International ACM SIGIR Conference on Researchand Development in Informaion Retrieval, pages 375–376. ACM, 2003.[8] S. Hallam, I. Cross, and M. Thaut. Oxford handbook of music psychology. OxfordUniversity Press, 2008.[9] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22ndAnnual International ACM SIGIR Conference on Research and Development in InformationRetrieval, pages 50–57. ACM, 1999.[10] X. Hu and J. S. Downie. Improving mood classification in music digital libraries bycombining lyrics and audio. In Proceedings of the 10th Annual Joint Conference onDigital Libraries, pages 159–168. ACM, 2010.[11] X. Hu and J. S. Downie. When lyrics outperform audio for music mood classification:a feature analysis. In Proceedings of International Society of Music InformationRetrieval Conference, pages 1–6, 2010.[12] X. Hu, J. S. Downie, and A. F. Ehmann. Lyric text mining in music mood classification.American Music, 183(5,049):2–209, 2009.[13] Y. Hu, X. Chen, and D. Yang. Lyric-based song emotion detection with affectivelexicon and fuzzy clustering method. In Proceedings of International Society ofMusic Information Retrieval Conference, pages 123–128, 2009.[14] R. Kempter, V. Sintsova, C. Musat, and P. Pu. Emotionwatch: Visualizing finegrainedemotions in event-related tweets. In Proceedings of the 8th InternationalAAAI Conference on Weblogs and Social Media, 2014.[15] L.-W. Ku, Y.-T. Liang, and H.-H. Chen. Opinion extraction, summarization andtracking in news and blog corpora. In Proceedings of AAAI spring symposium:Computational approaches to analyzing weblogs, pages 100–107, 2006.[16] C. Laurier, J. Grivolla, and P. Herrera. Multimodal music mood classification usingaudio and lyrics. In Proceedings of the 7th International Conference on MachineLearning and Applications, pages 688–693. IEEE, 2008.[17] C. Laurier and P. Herrera. Audio music mood classification using support vectormachine.[18] J. H. Lee and J. S. Downie. Survey of music information needs, uses, and seekingbehaviours: Preliminary findings. In Proceedings of the 5th International Conferenceon Music Information Retrieval, pages 441–446, 2004.[19] T. Li and M. Ogihara. Content-based music similarity search and emotion detection.In Proceedings of IEEE International Conference on Acoustics, Speech, and SignalProcessing, volume 5, pages V–705. IEEE, 2004.[20] M. I. Mandel and D. P. Ellis. Song-level features and support vector machines formusic classification. In Proceedings of International Conference on Music InformationRetrieval, pages 594–599, 2005.[21] L. Martin and P. Pu. Prediction of helpful reviews using emotions extraction. InProceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.[22] R. Mayer, R. Neumayer, and A. Rauber. Rhyme and style features for musical genreclassification by song lyrics. 2008.[23] M. F. Mckinney and J. Breebaart. Features for audio and music classification. InProceedings of International Conference on Music Information Retrieval, 2003.[24] R. Plutchik. The nature of emotions. American Scientist, 89:344, 2001.[25] J. F. Y. W. Robert J Ellis, Zhe Xing. Quantifying lexical novelty in song lyrics.In Proceedings of the 16th International Society for Music Information RetrievalConference, 2015.[26] J. A. Russell. Affective space is bipolar. Journal of Personality and Social Psychology,37(3):345–356, 1979.[27] J. A. Russell. A circumplex model of affect. Journal of personality and socialpsychology, 39(6):1161–1178, 1980.[28] P. Saari and T. Eerola. Semantic computing of moods based on tags in social mediaof music. IEEE Transactions on Knowledge and Data Engineering, 26(10):2548–2560, 2014.[29] K. R. Scherer. What are emotions? and how can they be measured? Social ScienceInformation, 44(4):695–729, 2005.[30] V. Sintsova, C.-C. Musat, and P. Pu. Fine-grained emotion recognition in olympictweets based on human computation. In Proceedings of the 4thWorkshop on ComputationalApproaches to Subjectivity, Sentiment and Social Media Analysis, numberEPFL-CONF-197185, 2013.[31] P. J. Stone, D. C. Dunphy, and M. S. Smith. The general inquirer: A computerapproach to content analysis. 1966.[32] G. Tzanetakis. Music analysis, retrieval and synthesis of audio signals marsyas. InProceedings of the 17th ACM International Conference on Multimedia, pages 931–932. ACM, 2009.[33] M. Van Zaanen and P. Kanters. Automatic mood classification using tf*idf basedon lyrics. In Proceedings of the 11th International Society of Music InformationRetrieval Conference, pages 75–80, 2010.[34] Y.-H. Yang, Y.-C. Lin, H.-T. Cheng, I.-B. Liao, Y.-C. Ho, and H. H. Chen. Towardmulti-modal music emotion classification. In Proceedings of Pacific-Rim Conferenceon Multimedia, pages 70–79. Springer, 2008.[35] Y.-H. Yang and J.-Y. Liu. Quantitative study of music listening behavior in a socialand affective context. IEEE Transactions on Multimedia, 15(6):1304–1315, 2013. zh_TW