Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 白藜蘆醇衍生物SRT1720在百草枯誘發帕金森氏症實驗模式的神經保護機制:針對粒線體功能之研究
Investigating the protective mechanism of SRT1720 in mediating paraquat-induced Parkinson`s disease model : focusing on mitochondrial function
作者 許庭凰
Hsu, Ting-Huang
貢獻者 趙知章<br>黃乃瑰
許庭凰
Hsu, Ting-Huang
關鍵詞 帕金森氏症
百草枯
SRT1720
粒線體
氧化自由基
自噬作用
Sirtuin Family
PGC-1α
Parkinson`s disease
Paraquat
SRT1720
Mitochondria
Reactive Oxygen Spices
Autophagy
Sirtuin Family
PGC-1α
日期 2017
上傳時間 1-Mar-2017 17:14:17 (UTC+8)
摘要 帕金森氏症 (Parkinson’s disease,PD) 為目前最普遍的神經退化性疾病之一,該病因主要是由於中腦黑質區的多巴胺細胞的死亡造成運動系統的失能。環境常用農藥百草枯 (Paraquat,PQ) 目前已知是導致帕金森氏症的環境因子之一。它主要作用在粒線體上,阻斷粒線體的功能、造成大量氧化自由基生成、並誘導細胞凋亡的發生。沉默調節因子蛋白Sirtuin家族 (Sirtuin Family,Sirt1-Sirt7) 是一群 Nicotinamide adenine dinucleotide (NAD+) 依賴性去乙醯化酶,具有抗老化、以及預防神經退化性疾病等能力。SRT1720是根據天然植物酚類白藜蘆醇製造出來的化學衍生物,具有活化Sirtuin的能力。先前研究也顯示SRT1720具有增加糖尿病小鼠的存活率、抗腫瘤、抗發炎等功能,但SRT1720對於神經退化性疾病的保護性並不清楚。為了解SRT1720是否具有對抗PQ的細胞毒性,用以評估SRT1720是否具有治療帕金森氏症的潛力,本研究使用人類神經瘤母細胞株 (SH-SY5Y) 作為帕金森氏症的離體外實驗模式,來探討SRT1720及PQ對於細胞的作用及影響。實驗結果顯示,PQ造成細胞存活率呈劑量反應地下降,而SRT1720可以回復因PQ所造成細胞存活率的下降、細胞凋亡的產生、粒線體的型態變化,以及降低氧化自由基的生成等。這證明SRT1720對細胞具有神經保護的效果。本研究也利用西方點墨法證實了當細胞暴露在PQ下,SRT1720會回復因PQ所導致Sirt1-Sirt7蛋白含量的下降。其中,大量表現Sirt1可以對抗PQ造成細胞的死亡。本研究也發現SRT1720可回復PQ自噬小體在細胞中的堆積情形,利用西方點墨法觀察SRT1720可以回復LC3-I/II的蛋白質再細胞間的堆積。此外,在對於20週大的C57BL/6小鼠注射PQ (10 mg/kg) 及SRT1720 (0.1mg/kg或1 mg/kg),並利用滾輪及獨木橋試驗觀察其運動行為。結果顯示,SRT1720可以回復PQ所造成運動能力上的下降,並且減緩PQ所造成中腦區多巴胺神經元的傷害。綜觀以上結果,在細胞暴露在PQ時,SRT1720或許可以經由保護粒線體功能,使ROS生成量達到回復及降低細胞凋亡的發生。同時SRT1720也能保持自噬作用的平衡,降低自噬小體在細胞中的堆積。這些機轉也許與SRT1720可以保護多巴胺神經元有關。另一方面,由於Peroxisomal proliferator-activated receptor-coactivator 1α (PGC-1α) 與粒線體的生合成與神經保護有關,本實驗也發現SRT1720可改變PGC-1α去乙醯化的程度,但SRT1720對於Sirtuin蛋白以及Sirt1下游PGC-1α的活化與否還需做進一步的調查及研究。此研究顯示SRT1720對於保護細胞免於受到PQ所引發氧化壓力以及粒線體損傷之神經退化模型提供了一個具有潛力的治療方法。
Parkinson’s disease (PD) is one of the most common neurodegenerative disorder and mainly affecting the motor system because of the dopamine neuronal death in the substantia nigra. The exposure to environmental neurotoxin paraquat (PQ) is a widely used herbicide. It induces the increase of ROS stress, leads to mitochondrial dysfunction, and results in apoptotic cell death. Epidemiologically, it could be the risk for PD incidence. Mammalian silent information regulator 2 Sirtuin Family (Sirt1-Sirt7) is a NAD+ dependent deacetylase enzyme and it protects against such as anti-aging and neurodegenerative disease. SRT1720 which derives from resveratrol is able to activate Sirt1. SRT1720 has been reported to improve survival in obese mice, anti-tumor, and anti-inflammatory, but the effect in the neurodegenerative disease it still unknown. We thus proposed if SRT1720 could have neuron- protective effect in PQ-induced toxicity. We used SH-SY5Y cell to evaluate the effect of SRT1720 and PQ. First, we confirmed that PQ could dose- and time-dependently decrease SH-SY5Y cell viability, increase ROS formation, and induce mitochondrial dysfunction. However, SRT1720 pretreatment improved cell viability, decreased apoptosis and ROS formation, and prevented mitochondrial dysfunction in PQ-treated SH-SY5Y cells. By Western blot analysis, SRT1720 pretreatment could preserve Sirt1-Sirt7 protein contents during PQ intoxication. In autophagy studies, we also found that SRT1720 could reduce PQ-induce autophagic vacuoles accumulation. Furthermore, we also found that intraperitoneally injection of 10 mg/kg PQ once a week in mice can decrease the level of motor activity after 6 weeks treatment. However, SRT1720 (0.1 mg/kg or 1mg/kg) treatment, reversed PQ- induced motor defect. Taken together, SRT1720 could protect mitochondrial function and improve cell survival during PQ intoxication. This work provided a promising therapeutic way for treating aging-related neurodegenerations, such as PD.
參考文獻 Ahmad T, Aggarwal K, Pattnaik B, Mukherjee S, Sethi T, Tiwari BK, Kumar M, Micheal A, Mabalirajan U, Ghosh B, Sinha Roy S, Agrawal A (2013) Computational classification of mitochondrial shapes reflects stress and redox state. Cell death & disease 4:e461.
Alural B, Ozerdem A, Allmer J, Genc K, Genc S (2015) Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells. Frontiers in cellular neuroscience 9:209.
Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends in neurosciences 30:194-202.
Bournival J, Quessy P, Martinoli MG (2009) Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cellular and molecular neurobiology 29:1169-1180.
Boutant M, Canto C (2014) SIRT1 metabolic actions: Integrating recent advances from mouse models. Molecular metabolism 3:5-18.
Busch F, Mobasheri A, Shayan P, Stahlmann R, Shakibaei M (2012) Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes. The Journal of biological chemistry 287:25770-25781.
Campos FL, Carvalho MM, Cristovao AC, Je G, Baltazar G, Salgado AJ, Kim YS, Sousa N (2013) Rodent models of Parkinson`s disease: beyond the motor symptomatology. Frontiers in behavioral neuroscience 7:175.
Castello PR, Drechsel DA, Patel M (2007) Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. The Journal of biological chemistry 282:14186-14193.
Chang SS, Lu TH, Eddleston M, Konradsen F, Sterne JA, Lin JJ, Gunnell D (2012) Factors associated with the decline in suicide by pesticide poisoning in Taiwan: a time trend analysis, 1987-2010. Clinical toxicology 50:471-480.
Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y, Huang J (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell death & disease 5:e1047.
de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson`s disease. The Lancet Neurology 5:525-535.
Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Critical reviews in toxicology 38:13-71.
Drechsel DA, Patel M (2009) Chapter 21 Paraquat‐Induced Production of Reactive Oxygen Species in Brain Mitochondria. 456:381-393.
Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson`s disease: molecular mechanisms and pathophysiological consequences. The EMBO journal 31:3038-3062.
Feng Y, Liu T, Dong SY, Guo YJ, Jankovic J, Xu H, Wu YC (2015) Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT1 and H3K9 acetylation in SH-SY5Y cells. Journal of neurochemistry 134:668-676.
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & development 20:1075-1080.
Funk JA, Odejinmi S, Schnellmann RG (2010) SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. The Journal of pharmacology and experimental therapeutics 333:593-601.
Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R (2013) Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicological sciences : an official journal of the Society of Toxicology 136:166-182.
Gawarammana IB, Buckley NA (2011) Medical management of paraquat ingestion. British journal of clinical pharmacology 72:745-757.
Goetz CG (1986) Charcot on Parkinson`s disease. Movement Disorders 1:27-32.
Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, Francisco-Morcillo J, Zaragoza C, Soler G, Fuentes JM (2007) Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological sciences : an official journal of the Society of Toxicology 97:448-458.
Gutterman DD (2005) Mitochondria and reactive oxygen species: an evolution in function. Circulation research 97:302-304.
He X, Wang L, Szklarz G, Bi Y, Ma Q (2012) Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway. The Journal of pharmacology and experimental therapeutics 342:81-90.
Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nature reviews Molecular cell biology 13:225-238.
Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK (2012) Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicology letters 209:203-210.
Huang CL, Chao CC, Lee YC, Lu MK, Cheng JJ, Yang YC, Wang VC, Chang WC, Huang NK (2016) Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability. Molecular neurobiology 53:2169-2188.
Hwang O (2013) Role of oxidative stress in Parkinson`s disease. Experimental neurobiology 22:11-17.
Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V (2015) Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 11:1063-1080.
Jankovic J (2008) Parkinson`s disease: clinical features and diagnosis. Journal of neurology, neurosurgery, and psychiatry 79:368-376.
Jianyuan Luo AYN, Shin-ichiro Imai, Delin Chen, Fei Su, Ariel Shiloh, Leonard Guarente, Wei Gu (2001) Negative Control of p53 by Sir2α Promotes Cell Survival under Stress. cell:p137–148.
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & development:13: 2570-2580.
Karagiannis TC, Ververis K (2012) Potential of chromatin modifying compounds for the treatment of Alzheimer`s disease. Pathobiology of aging & age related diseases 2.
Kondo Y, Kondo S (2006) Autophagy and Cancer Therapy. [Autophagy 2:2, 85-90, April/May/June 2006]; .
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109-1122.
LaGuire TC, Reaves SK (2013) The Sirtuins in Aging and Metabolic Regulation. Food and Nutrition Sciences 04:668-677.
Laporte C, Kosta A, Klein G, Aubry L, Lam D, Tresse E, Luciani MF, Golstein P (2007) A necrotic cell death model in a protist. Cell death and differentiation 14:266-274.
Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins--novel therapeutic targets to treat age-associated diseases. Nature reviews Drug discovery 7:841-853.
Li S, Zhao G, Chen L, Ding Y, Lian J, Hong G, Lu Z (2016) Resveratrol protects mice from paraquat-induced lung injury: The important role of SIRT1 and NRF2 antioxidant pathways. Molecular medicine reports 13:1833-1838.
Liu X, Hajnoczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell death and differentiation 18:1561-1572.
Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS chemical neuroscience 3:1063-1072.
Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Nunez O, Pallas M, Portero-Otin M, Osta R, Navarro X (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 11:419-432.
Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. The Lancet Neurology 6:352-361.
Milne JC et al. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712-716.
Mollacea V, Muscolia MlC, Palmaa E, Granatob T, Rispolia V, a RN, Rotirotia D, Salveminic D (2003) The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non peptidyl superoxide dismutase mimetic. Neuroscience Letters.
Moretto A, Colosio C (2013) The role of pesticide exposure in the genesis of Parkinson`s disease: epidemiological studies and experimental data. Toxicology 307:24-34.
Murphy MP (2009) How mitochondria produce reactive oxygen species. The Biochemical journal 417:1-13.
Myung W, Lee GH, Won HH, Fava M, Mischoulon D, Nyer M, Kim DK, Heo JY, Jeon HJ (2015) Paraquat prohibition and change in the suicide rate and methods in South Korea. PloS one 10:e0128980.
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature medicine 13:619-624.
Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. The Journal of biological chemistry 285:31995-32002.
Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox biology 4:6-13.
Niso-Santano M, Bravo-San Pedro JM, Gomez-Sanchez R, Climent V, Soler G, Fuentes JM, Gonzalez-Polo RA (2011) ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicological sciences : an official journal of the Society of Toxicology 119:156-168.
Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson`s disease puzzle. Nature medicine 16:653-661.
Oyarce AM, Fleming PJ (1991) Multiple forms of human dopamine β-hydroxylase in SH-SY5Y neuroblastoma cells. Archives of biochemistry and biophysics 290:503-510.
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. The Journal of biological chemistry 285:8340-8351.
Parkinson J (2002) An essay on the shaking palsy. 1817. The Journal of neuropsychiatry and clinical neurosciences 14:223-236; discussion 222.
Peng K, Tao Y, Zhang J, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Zhao J, Wu Q, Zou Z, Cao J, Sai Y (2016) Resveratrol Regulates Mitochondrial Biogenesis and Fission/Fusion to Attenuate Rotenone-Induced Neurotoxicity. Oxidative medicine and cellular longevity 2016:6705621.
Perier C, Vila M (2012) Mitochondrial biology and Parkinson`s disease. Cold Spring Harbor perspectives in medicine 2:a009332.
Polito L, Greco A, Seripa D (2016) Genetic Profile, Environmental Exposure, and Their Interaction in Parkinson`s Disease. Parkinson`s disease 2016:6465793.
Prasad K, Winnik B, Thiruchelvam MJ, Buckley B, Mirochnitchenko O, Richfield EK (2007) Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain. Environmental health perspectives 115:1448-1453.
Sack MN, Finkel T (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harbor perspectives in biology 4.
Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of molecular biology 382:790-801.
Schultz W (2010) Multiple functions of dopamine neurons. F1000 biology reports 2.
Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K, Hayase N, Kimura K, Shiono H (2001) Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain research 906:135-142.
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397-408.
Takumida M, Takumida H, Katagiri Y, Anniko M (2016) Localization of sirtuins (SIRT1-7) in the aged mouse inner ear. Acta oto-laryngologica 136:120-131.
Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, paraquat, and Parkinson`s disease. Environmental health perspectives 119:866-872.
Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis : an international journal on programmed cell death 13:1-9.
Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular research 79:208-217.
Vian L, Vincent J, Maurin J, Fabre I, Giroux J, Cano J (1995) Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation. Toxicology in Vitro 9:185-190.
Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. BioFactors 38:349-359.
Wasilewski M, Scorrano L (2009) The changing shape of mitochondrial apoptosis. Trends in endocrinology and metabolism: TEM 20:287-294.
Wesseling C, Roman N, Quiros I, Paez L, Garcia V, Mora AM, Juncos JL, Steenland KN (2013) Parkinson`s and Alzheimer`s diseases in Costa Rica: a feasibility study toward a national screening program. Global health action 6:23061.
Xu L, Wang Z (2016) Chloroquine rescues A549 cells from paraquat-induced death. Drug and chemical toxicology 39:167-173.
Xu R, Hu Q, Ma Q, Liu C, Wang G (2014) The protease Omi regulates mitochondrial biogenesis through the GSK3beta/PGC-1alpha pathway. Cell death & disease 5:e1373.
Youle MKaR (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell death and differentiation.
Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062-1065.
描述 碩士
國立政治大學
神經科學研究所
103754002
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103754002
資料類型 thesis
dc.contributor.advisor 趙知章<br>黃乃瑰zh_TW
dc.contributor.author (Authors) 許庭凰zh_TW
dc.contributor.author (Authors) Hsu, Ting-Huangen_US
dc.creator (作者) 許庭凰zh_TW
dc.creator (作者) Hsu, Ting-Huangen_US
dc.date (日期) 2017en_US
dc.date.accessioned 1-Mar-2017 17:14:17 (UTC+8)-
dc.date.available 1-Mar-2017 17:14:17 (UTC+8)-
dc.date.issued (上傳時間) 1-Mar-2017 17:14:17 (UTC+8)-
dc.identifier (Other Identifiers) G0103754002en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/106882-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 103754002zh_TW
dc.description.abstract (摘要) 帕金森氏症 (Parkinson’s disease,PD) 為目前最普遍的神經退化性疾病之一,該病因主要是由於中腦黑質區的多巴胺細胞的死亡造成運動系統的失能。環境常用農藥百草枯 (Paraquat,PQ) 目前已知是導致帕金森氏症的環境因子之一。它主要作用在粒線體上,阻斷粒線體的功能、造成大量氧化自由基生成、並誘導細胞凋亡的發生。沉默調節因子蛋白Sirtuin家族 (Sirtuin Family,Sirt1-Sirt7) 是一群 Nicotinamide adenine dinucleotide (NAD+) 依賴性去乙醯化酶,具有抗老化、以及預防神經退化性疾病等能力。SRT1720是根據天然植物酚類白藜蘆醇製造出來的化學衍生物,具有活化Sirtuin的能力。先前研究也顯示SRT1720具有增加糖尿病小鼠的存活率、抗腫瘤、抗發炎等功能,但SRT1720對於神經退化性疾病的保護性並不清楚。為了解SRT1720是否具有對抗PQ的細胞毒性,用以評估SRT1720是否具有治療帕金森氏症的潛力,本研究使用人類神經瘤母細胞株 (SH-SY5Y) 作為帕金森氏症的離體外實驗模式,來探討SRT1720及PQ對於細胞的作用及影響。實驗結果顯示,PQ造成細胞存活率呈劑量反應地下降,而SRT1720可以回復因PQ所造成細胞存活率的下降、細胞凋亡的產生、粒線體的型態變化,以及降低氧化自由基的生成等。這證明SRT1720對細胞具有神經保護的效果。本研究也利用西方點墨法證實了當細胞暴露在PQ下,SRT1720會回復因PQ所導致Sirt1-Sirt7蛋白含量的下降。其中,大量表現Sirt1可以對抗PQ造成細胞的死亡。本研究也發現SRT1720可回復PQ自噬小體在細胞中的堆積情形,利用西方點墨法觀察SRT1720可以回復LC3-I/II的蛋白質再細胞間的堆積。此外,在對於20週大的C57BL/6小鼠注射PQ (10 mg/kg) 及SRT1720 (0.1mg/kg或1 mg/kg),並利用滾輪及獨木橋試驗觀察其運動行為。結果顯示,SRT1720可以回復PQ所造成運動能力上的下降,並且減緩PQ所造成中腦區多巴胺神經元的傷害。綜觀以上結果,在細胞暴露在PQ時,SRT1720或許可以經由保護粒線體功能,使ROS生成量達到回復及降低細胞凋亡的發生。同時SRT1720也能保持自噬作用的平衡,降低自噬小體在細胞中的堆積。這些機轉也許與SRT1720可以保護多巴胺神經元有關。另一方面,由於Peroxisomal proliferator-activated receptor-coactivator 1α (PGC-1α) 與粒線體的生合成與神經保護有關,本實驗也發現SRT1720可改變PGC-1α去乙醯化的程度,但SRT1720對於Sirtuin蛋白以及Sirt1下游PGC-1α的活化與否還需做進一步的調查及研究。此研究顯示SRT1720對於保護細胞免於受到PQ所引發氧化壓力以及粒線體損傷之神經退化模型提供了一個具有潛力的治療方法。zh_TW
dc.description.abstract (摘要) Parkinson’s disease (PD) is one of the most common neurodegenerative disorder and mainly affecting the motor system because of the dopamine neuronal death in the substantia nigra. The exposure to environmental neurotoxin paraquat (PQ) is a widely used herbicide. It induces the increase of ROS stress, leads to mitochondrial dysfunction, and results in apoptotic cell death. Epidemiologically, it could be the risk for PD incidence. Mammalian silent information regulator 2 Sirtuin Family (Sirt1-Sirt7) is a NAD+ dependent deacetylase enzyme and it protects against such as anti-aging and neurodegenerative disease. SRT1720 which derives from resveratrol is able to activate Sirt1. SRT1720 has been reported to improve survival in obese mice, anti-tumor, and anti-inflammatory, but the effect in the neurodegenerative disease it still unknown. We thus proposed if SRT1720 could have neuron- protective effect in PQ-induced toxicity. We used SH-SY5Y cell to evaluate the effect of SRT1720 and PQ. First, we confirmed that PQ could dose- and time-dependently decrease SH-SY5Y cell viability, increase ROS formation, and induce mitochondrial dysfunction. However, SRT1720 pretreatment improved cell viability, decreased apoptosis and ROS formation, and prevented mitochondrial dysfunction in PQ-treated SH-SY5Y cells. By Western blot analysis, SRT1720 pretreatment could preserve Sirt1-Sirt7 protein contents during PQ intoxication. In autophagy studies, we also found that SRT1720 could reduce PQ-induce autophagic vacuoles accumulation. Furthermore, we also found that intraperitoneally injection of 10 mg/kg PQ once a week in mice can decrease the level of motor activity after 6 weeks treatment. However, SRT1720 (0.1 mg/kg or 1mg/kg) treatment, reversed PQ- induced motor defect. Taken together, SRT1720 could protect mitochondrial function and improve cell survival during PQ intoxication. This work provided a promising therapeutic way for treating aging-related neurodegenerations, such as PD.en_US
dc.description.tableofcontents 謝 誌 II
中文摘要 IV
英文摘要 VI
目 錄 VIII
圖 次 XII
縮寫對照表 XIV
第一章 緒論 1
第一節 帕金森氏症 (Parkinson’s disease,PD) 2
一、 帕金森氏症之介紹 2
二、 帕金森氏症之致病機轉 2
三、 帕金森氏症之病因 3
第二節 百草枯 (Paraquat,PQ) 4
一、 百草枯之介紹 4
二、 百草枯之分子機轉 5
第三節 粒線體 (Mitochondria) 6
一、 粒線體之構造 6
二、 粒線體之功能 6
三、 粒線體之型態 7
四、 粒線體與氧化壓力 8
五、 自由基與抗氧化系統 8
第四節 細胞凋亡 (Apoptosis) 9
一、 細胞凋亡之介紹 9
二、 細胞凋亡與自噬作用 11
第五節 自噬作用 11
一、 自噬作用之介紹 11
二、 自噬作用與百草枯的關係 12
第六節 沉默調節蛋白Sirtuin 13
一、 Sirtuin Family 13
二、 SRT1720 16
第六節 論文目的及研究策略 17
第二章 材料與方法 18
第一節 化學藥品與儀器 19
一、 儀器設備 19
二、 化學藥品 20
三、 抗體 22
四、 質體Plasmid 22
五、 藥品製備 23
第二節 實驗方法 25
一、 人類神經瘤母細胞株SH-SY5Y之培養 25
二、 藥物處理 26
三、 細胞存活率試驗 27
四、 細胞基因轉染技術 (Transfection) 28
五、 細胞固定 28
六、 細胞貼片 29
七、 螢光影像測定 29
八、 大量質體 (Plasmid) 培養及抽取 30
九、 菌種保存 (Banking) 31
十、 Caspase-3 活性測試 31
十一、 西方點墨法 (Western Blot) 31
十二、 免疫沉澱法 (Immunoprecipitation,IP) 35
十三、 實驗動物行為檢測 35
十四、 小鼠灌流 (Perfusion) 37
十五、 冷凍切片 37
十六、 免疫組織化學染色法 (Immunohistochemistry,IHC) 38
十七、 統計分析 38
第三章 實驗結果 40
第一節  PQ對於SH-SY5Y細胞的細胞存活率影響 41
第二節  SRT1720前處理對於PQ所造成SH-SY5Y細胞存活率的影響 42
第三節  SRT1720前處理對於PQ所造成之SH-SY5Y細胞caspase-3活性變化測定 42
第四節  SRT1720前處理對於PQ所造成之SH-SY5Y細胞的粒線體型態變化 43
第五節  SRT1720前處理對於PQ所造成之SH-SY5Y細胞的活性氧 (Reactive Oxygen Species,ROS) 生成之影響 43
第六節  SRT1720前處理對於PQ所造成之SH-SY5Y中粒線體膜電位變化之影響 44
第七節  Sirt1 抑制劑 Sirtinol前處理對於PQ所造成之SH-SY5Y細胞存活率的影響 44
第八節  Sirt1轉染後前處理SRT1720對於PQ所造成SH-SY5Y細胞存活率的影響 45
第九節  SRT1720前處理對於PQ所造成Sirtuin蛋白質之影響 45
第十節  CHX (Cycloheximide) 及Act. D (Actinomycin D)前處理後,SRT1720對於PQ所造成SH-SY5Y細胞存活率的影響 47
第十一節 SRT1720前處理對於PQ所造成PGC-1α之影響 48
第十二節 SRT1720前處理對於PQ所造成mtTFA之影響 48
第十三節 SRT1720前處理對於PQ所造成SOD1及SOD2之影響 49
第十四節 SRT1720前處理對於PQ所造成SH-SY5Y細胞的自噬作用影響 49
第十五節 Chloroquine(CQ) 前處理對於PQ所造成之SH-SY5Y細胞的細胞存活率影響 50
第十六節 小鼠腹腔注射PQ+SRT1720對於其運動行為之變化 50
第十七節 小鼠腹腔注射SRT1720與PQ對於黑質緻密部 (Substantia nigra pars compacta,SNc) 中酪氨酸羟化酶(Tyrosine hydroxylase,TH) 含量之影響 51
第四章 討論 52
第五章 結論及未來展望 59
實驗圖表 60
參考文獻 91
zh_TW
dc.format.extent 2988122 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103754002en_US
dc.subject (關鍵詞) 帕金森氏症zh_TW
dc.subject (關鍵詞) 百草枯zh_TW
dc.subject (關鍵詞) SRT1720zh_TW
dc.subject (關鍵詞) 粒線體zh_TW
dc.subject (關鍵詞) 氧化自由基zh_TW
dc.subject (關鍵詞) 自噬作用zh_TW
dc.subject (關鍵詞) Sirtuin Familyzh_TW
dc.subject (關鍵詞) PGC-1αzh_TW
dc.subject (關鍵詞) Parkinson`s diseaseen_US
dc.subject (關鍵詞) Paraquaten_US
dc.subject (關鍵詞) SRT1720en_US
dc.subject (關鍵詞) Mitochondriaen_US
dc.subject (關鍵詞) Reactive Oxygen Spicesen_US
dc.subject (關鍵詞) Autophagyen_US
dc.subject (關鍵詞) Sirtuin Familyen_US
dc.subject (關鍵詞) PGC-1αen_US
dc.title (題名) 白藜蘆醇衍生物SRT1720在百草枯誘發帕金森氏症實驗模式的神經保護機制:針對粒線體功能之研究zh_TW
dc.title (題名) Investigating the protective mechanism of SRT1720 in mediating paraquat-induced Parkinson`s disease model : focusing on mitochondrial functionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Ahmad T, Aggarwal K, Pattnaik B, Mukherjee S, Sethi T, Tiwari BK, Kumar M, Micheal A, Mabalirajan U, Ghosh B, Sinha Roy S, Agrawal A (2013) Computational classification of mitochondrial shapes reflects stress and redox state. Cell death & disease 4:e461.
Alural B, Ozerdem A, Allmer J, Genc K, Genc S (2015) Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells. Frontiers in cellular neuroscience 9:209.
Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends in neurosciences 30:194-202.
Bournival J, Quessy P, Martinoli MG (2009) Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cellular and molecular neurobiology 29:1169-1180.
Boutant M, Canto C (2014) SIRT1 metabolic actions: Integrating recent advances from mouse models. Molecular metabolism 3:5-18.
Busch F, Mobasheri A, Shayan P, Stahlmann R, Shakibaei M (2012) Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes. The Journal of biological chemistry 287:25770-25781.
Campos FL, Carvalho MM, Cristovao AC, Je G, Baltazar G, Salgado AJ, Kim YS, Sousa N (2013) Rodent models of Parkinson`s disease: beyond the motor symptomatology. Frontiers in behavioral neuroscience 7:175.
Castello PR, Drechsel DA, Patel M (2007) Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. The Journal of biological chemistry 282:14186-14193.
Chang SS, Lu TH, Eddleston M, Konradsen F, Sterne JA, Lin JJ, Gunnell D (2012) Factors associated with the decline in suicide by pesticide poisoning in Taiwan: a time trend analysis, 1987-2010. Clinical toxicology 50:471-480.
Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y, Huang J (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell death & disease 5:e1047.
de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson`s disease. The Lancet Neurology 5:525-535.
Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Critical reviews in toxicology 38:13-71.
Drechsel DA, Patel M (2009) Chapter 21 Paraquat‐Induced Production of Reactive Oxygen Species in Brain Mitochondria. 456:381-393.
Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson`s disease: molecular mechanisms and pathophysiological consequences. The EMBO journal 31:3038-3062.
Feng Y, Liu T, Dong SY, Guo YJ, Jankovic J, Xu H, Wu YC (2015) Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT1 and H3K9 acetylation in SH-SY5Y cells. Journal of neurochemistry 134:668-676.
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & development 20:1075-1080.
Funk JA, Odejinmi S, Schnellmann RG (2010) SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. The Journal of pharmacology and experimental therapeutics 333:593-601.
Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R (2013) Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicological sciences : an official journal of the Society of Toxicology 136:166-182.
Gawarammana IB, Buckley NA (2011) Medical management of paraquat ingestion. British journal of clinical pharmacology 72:745-757.
Goetz CG (1986) Charcot on Parkinson`s disease. Movement Disorders 1:27-32.
Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, Francisco-Morcillo J, Zaragoza C, Soler G, Fuentes JM (2007) Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological sciences : an official journal of the Society of Toxicology 97:448-458.
Gutterman DD (2005) Mitochondria and reactive oxygen species: an evolution in function. Circulation research 97:302-304.
He X, Wang L, Szklarz G, Bi Y, Ma Q (2012) Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway. The Journal of pharmacology and experimental therapeutics 342:81-90.
Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nature reviews Molecular cell biology 13:225-238.
Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK (2012) Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicology letters 209:203-210.
Huang CL, Chao CC, Lee YC, Lu MK, Cheng JJ, Yang YC, Wang VC, Chang WC, Huang NK (2016) Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability. Molecular neurobiology 53:2169-2188.
Hwang O (2013) Role of oxidative stress in Parkinson`s disease. Experimental neurobiology 22:11-17.
Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V (2015) Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 11:1063-1080.
Jankovic J (2008) Parkinson`s disease: clinical features and diagnosis. Journal of neurology, neurosurgery, and psychiatry 79:368-376.
Jianyuan Luo AYN, Shin-ichiro Imai, Delin Chen, Fei Su, Ariel Shiloh, Leonard Guarente, Wei Gu (2001) Negative Control of p53 by Sir2α Promotes Cell Survival under Stress. cell:p137–148.
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & development:13: 2570-2580.
Karagiannis TC, Ververis K (2012) Potential of chromatin modifying compounds for the treatment of Alzheimer`s disease. Pathobiology of aging & age related diseases 2.
Kondo Y, Kondo S (2006) Autophagy and Cancer Therapy. [Autophagy 2:2, 85-90, April/May/June 2006]; .
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109-1122.
LaGuire TC, Reaves SK (2013) The Sirtuins in Aging and Metabolic Regulation. Food and Nutrition Sciences 04:668-677.
Laporte C, Kosta A, Klein G, Aubry L, Lam D, Tresse E, Luciani MF, Golstein P (2007) A necrotic cell death model in a protist. Cell death and differentiation 14:266-274.
Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins--novel therapeutic targets to treat age-associated diseases. Nature reviews Drug discovery 7:841-853.
Li S, Zhao G, Chen L, Ding Y, Lian J, Hong G, Lu Z (2016) Resveratrol protects mice from paraquat-induced lung injury: The important role of SIRT1 and NRF2 antioxidant pathways. Molecular medicine reports 13:1833-1838.
Liu X, Hajnoczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell death and differentiation 18:1561-1572.
Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS chemical neuroscience 3:1063-1072.
Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Nunez O, Pallas M, Portero-Otin M, Osta R, Navarro X (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 11:419-432.
Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. The Lancet Neurology 6:352-361.
Milne JC et al. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712-716.
Mollacea V, Muscolia MlC, Palmaa E, Granatob T, Rispolia V, a RN, Rotirotia D, Salveminic D (2003) The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non peptidyl superoxide dismutase mimetic. Neuroscience Letters.
Moretto A, Colosio C (2013) The role of pesticide exposure in the genesis of Parkinson`s disease: epidemiological studies and experimental data. Toxicology 307:24-34.
Murphy MP (2009) How mitochondria produce reactive oxygen species. The Biochemical journal 417:1-13.
Myung W, Lee GH, Won HH, Fava M, Mischoulon D, Nyer M, Kim DK, Heo JY, Jeon HJ (2015) Paraquat prohibition and change in the suicide rate and methods in South Korea. PloS one 10:e0128980.
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature medicine 13:619-624.
Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. The Journal of biological chemistry 285:31995-32002.
Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox biology 4:6-13.
Niso-Santano M, Bravo-San Pedro JM, Gomez-Sanchez R, Climent V, Soler G, Fuentes JM, Gonzalez-Polo RA (2011) ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicological sciences : an official journal of the Society of Toxicology 119:156-168.
Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson`s disease puzzle. Nature medicine 16:653-661.
Oyarce AM, Fleming PJ (1991) Multiple forms of human dopamine β-hydroxylase in SH-SY5Y neuroblastoma cells. Archives of biochemistry and biophysics 290:503-510.
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. The Journal of biological chemistry 285:8340-8351.
Parkinson J (2002) An essay on the shaking palsy. 1817. The Journal of neuropsychiatry and clinical neurosciences 14:223-236; discussion 222.
Peng K, Tao Y, Zhang J, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Zhao J, Wu Q, Zou Z, Cao J, Sai Y (2016) Resveratrol Regulates Mitochondrial Biogenesis and Fission/Fusion to Attenuate Rotenone-Induced Neurotoxicity. Oxidative medicine and cellular longevity 2016:6705621.
Perier C, Vila M (2012) Mitochondrial biology and Parkinson`s disease. Cold Spring Harbor perspectives in medicine 2:a009332.
Polito L, Greco A, Seripa D (2016) Genetic Profile, Environmental Exposure, and Their Interaction in Parkinson`s Disease. Parkinson`s disease 2016:6465793.
Prasad K, Winnik B, Thiruchelvam MJ, Buckley B, Mirochnitchenko O, Richfield EK (2007) Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain. Environmental health perspectives 115:1448-1453.
Sack MN, Finkel T (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harbor perspectives in biology 4.
Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of molecular biology 382:790-801.
Schultz W (2010) Multiple functions of dopamine neurons. F1000 biology reports 2.
Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K, Hayase N, Kimura K, Shiono H (2001) Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain research 906:135-142.
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397-408.
Takumida M, Takumida H, Katagiri Y, Anniko M (2016) Localization of sirtuins (SIRT1-7) in the aged mouse inner ear. Acta oto-laryngologica 136:120-131.
Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, paraquat, and Parkinson`s disease. Environmental health perspectives 119:866-872.
Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis : an international journal on programmed cell death 13:1-9.
Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular research 79:208-217.
Vian L, Vincent J, Maurin J, Fabre I, Giroux J, Cano J (1995) Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation. Toxicology in Vitro 9:185-190.
Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. BioFactors 38:349-359.
Wasilewski M, Scorrano L (2009) The changing shape of mitochondrial apoptosis. Trends in endocrinology and metabolism: TEM 20:287-294.
Wesseling C, Roman N, Quiros I, Paez L, Garcia V, Mora AM, Juncos JL, Steenland KN (2013) Parkinson`s and Alzheimer`s diseases in Costa Rica: a feasibility study toward a national screening program. Global health action 6:23061.
Xu L, Wang Z (2016) Chloroquine rescues A549 cells from paraquat-induced death. Drug and chemical toxicology 39:167-173.
Xu R, Hu Q, Ma Q, Liu C, Wang G (2014) The protease Omi regulates mitochondrial biogenesis through the GSK3beta/PGC-1alpha pathway. Cell death & disease 5:e1373.
Youle MKaR (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell death and differentiation.
Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062-1065.
zh_TW