Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 基於眼動與滑鼠追蹤之互動式資料視覺化評估
Evaluation of interactive data visualization tools based on gaze and mouse tracking作者 彭久芳
Peng, Chiu-Fang貢獻者 廖文宏<br>陳百齡
Liao, Wen-Hung<br>Chen, Pai-Lin
彭久芳
Peng, Chiu-Fang關鍵詞 互動式資料視覺化
眼動追蹤
滑鼠追蹤
量化使用者評估
Interactive data visualization
Gaze tracking
Mouse tracking
Quantitative usability evaluation日期 2017 上傳時間 5-Apr-2017 15:41:54 (UTC+8) 摘要 隨著互動式資料視覺化工具越來越多,設計者需要一個方法來衡量其作品是否好用、能否被理解、使用效率高低。互動式資料視覺化需要透過使用者的互動才能觀察到資料的不同面向,再進一步產生洞見,然而現有的評估方式多僅聚焦於靜態資料圖表,設計者無法從中得知使用者的操作困難之處,並據此進行加強與改善,因此本研究提出一個整合量化分析與質化記錄的系統性評估方式,應用於互動式資料視覺化的優使性(usability)分析。本研究的方法為追蹤使用者的眼動和滑鼠操作過程,先將其記錄成量化數據,透過興趣區域的標定與將轉換使用者行為成序列後,進行序列運算和統計分析;同時,從使用者經驗研究方法得到實驗過程的質化記錄,用來輔助解釋量化分析的結果。本論文藉由兩個互動式資料視覺化工具來驗證以眼動與滑鼠追蹤評估互動式資料視覺化是可行的,我們提出了具體的實驗流程、量化紀錄與分析方式,並建議以下評估指標:吸引力、易發現性、困難度、易識別性、易理解性、精準表達程度、細部困難度、使用效率。
As more and more interactive data visualization tools emerge, designers need an organized evaluation method to provide timely feedback and understand user behavior. In contrast to traditional graphical presentations, interactive data visualization tools call for user manipulation to gain specific insights. It is therefore imperative to study the intermediate operation process, rather than the final outcome, to provide a critical understanding of the developed tool. Toward this objective, we propose a systematic approach combining quantitative analysis and qualitative assessment to gauge the usability of interactive data visualization tools in this research. Firstly, quantitative data including gaze and mouse movements are collected. By combining the definition of area of interest, these trajectories can be converted into user sequences, which are conveniently accessible for further statistical analysis as well as path comparison. Secondly, qualitative information obtained by observing user operation is gathered to offer additional insight and complement/support conclusions obtained from quantitative analysis. Two interactive data visualization tools are employed to examine the feasibility and universality of our experimental and analytical procedure. To conclude, we come up with several key indicators to evaluate interactive data visualization, including attraction, discoverability, difficulty, identifiability, comprehensibility, precision of expression, difficulty(detailed) and efficiency.參考文獻 [1] 陳為,沈則潛,陶煜波(民103),「視覺化資料──100% 全腦吸收大數據,直入神經元」,佳魁資訊,台北市。[2] 劉自強,黃芝瑩(譯)(民102)。「網頁互動式資料視覺化:使用D3」(原作者:Scott Murray)。台北市:歐萊禮。(原著出版年:102)。[3] Information visualization. In Wikipedia, The Free Encyclopedia. Last visited on 2/4/2016.[4] Infographic. In Wikipedia, The Free Encyclopedia. Last visited on 14:48 2/4/2016.[5] Data visualization. In Wikipedia, The Free Encyclopedia. Last visited on 14:50 2/4/2016.[6] 康仕仲(民105),資料視覺化之理論、賞析與實作。取自https://goo.gl/cWdUu0。[7] Data-driven documents. Last visited on 24/3/2016.[8] Tableau. Last visited on 24/3s/2016.[9] Scott Bateman, Regan L Mandryk, Carl Gutwin, Aaron Genest, David McDine, and Christopher Brooks. Useful junk?: the effects of visual embellishment on comprehension and memorability of charts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2573–2582. ACM, 2010.[10] Marcel Adam Just and Patricia A Carpenter. Using eye fixations to study reading comprehension. New methods in reading comprehension research, pages 151–182, 1984.[11] Martijn Tennekes and Edwin de Jonge. Tree colors: color schemes for tree-structured data. IEEE transactions on visualization and computer graphics, 20(12):2072–2081, 2014.[12] Fernanda B Viegas, Martin Wattenberg, and Jonathan Feinberg. Participatory visualization with wordle. IEEE transactions on visualization and computer graphics, 15(6):1137–1144,2009.[13] Bongshin Lee, Nathalie Henry Riche, Amy K Karlson, and Sheelash Carpendale. Sparkclouds: Visualizing trends in tag clouds. IEEE transactions on visualization and computer graphics, 16(6):1182–1189, 2010.[14] Anna W Rivadeneira, Daniel M Gruen, Michael J Muller, and David R Millen. Getting our head in the clouds: toward evaluation studies of tagclouds. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 995–998. ACM, 2007.[15] Catherine Plaisant. The challenge of information visualization evaluation. In Proceedings of the working conference on Advanced visual interfaces, pages 109–116. ACM, 2004.[16] Edward R Tufte and PR Graves-Morris. The visual display of quantitative information, volume 2. Graphics press Cheshire, CT, 1983.[17] Data looks better naked, 2013.[18] S Few and P Edge. Sometimes we must raise our voices. 2009.[19] Ohad Inbar, Noam Tractinsky, and Joachim Meyer. Minimalism in information visualization: attitudes towards maximizing the data-ink ratio. In Proceedings of the 14th European conference on Cognitive ergonomics: invent! explore!, pages 185–188. ACM, 2007.[20] James D Kelly. The data-ink ratio and accuracy of newspaper graphs. Journalism and Mass Communication Quarterly, 66(3):632, 1989.[21] Julia Kulla-Mader. Graphs via ink: Understanding how the amount of non-data-ink in a graph affects perception and learning. Master’s Thesis, Department of Information and Library Science, University of North Carolina, 2007.[22] Michael Burch, Natalia Konevtsova, Julian Heinrich, Markus Hoeferlin, and Daniel Weiskopf. Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Transactions on Visualization and Computer Graphics, 17(12):2440–2448, 2011.[23] Dereck Toker, Ben Steichen, Matthew Gingerich, Cristina Conati, and Giuseppe Carenini. Towards facilitating user skill acquisition: identifying untrained visualization users through eye tracking. In Proceedings of the 19th international conference on Intelligent User Interfaces, pages 105–114. ACM, 2014.[24] Joseph H Goldberg and Jonathan I Helfman. Comparing information graphics: a critical look at eye tracking. In Proceedings of the 3rd BELIV’10 Workshop: Beyond time and errors: Novel evaluation methods for information visualization, pages 71–78. ACM, 2010.[25] Joseph H Goldberg and Anna M Wichansky. Eye tracking in usability evaluation: A practitioner’s guide. To appear in: Hyönä, 2002.[26] Eye movement in reading. In Wikipedia, The Free Encyclopedia. Last visited on 13:06 31/3/2016.[27] Vidhya Navalpakkam and Elizabeth Churchill. Mouse tracking: measuring and predicting users’ experience of web-based content. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2963–2972. ACM, 2012.[28] Ernesto Arroyo, Ted Selker, and Willy Wei. Usability tool for analysis of web designs using mouse tracks. In CHI’06 extended abstracts on Human factors in computing systems, pages 484–489. ACM, 2006.[29] Eric Hehman, Ryan M Stolier, and Jonathan B Freeman. Advanced mouse-tracking analytic techniques for enhancing psychological science. Group Processes & Intergroup Relations, 18(3):384–401, 2015.[30] Hotjar. Last visited on 11/7/2016.[31] Jens Gerken, Peter Bak, Christian Jetter, Daniel Klinkhammer, and Harald Reiterer. How to use interaction logs effectively for usability evaluation. In BELIV, 2008.[32] Kerry Rodden and Xin Fu. Exploring how mouse movements relate to eye movements on web search results pages. Web Information Seeking and Interaction, pages 29–32, 2007.[33] Kerry Rodden, Xin Fu, Anne Aula, and Ian Spiro. Eye-mouse coordination patterns on web search results pages. In CHI’08 extended abstracts on Human factors in computing systems, pages 2997–3002. ACM, 2008.[34] Vidhya Navalpakkam, LaDawn Jentzsch, Rory Sayres, Sujith Ravi, Amr Ahmed, and Alex Smola. Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts. In Proceedings of the 22nd international conference on World Wide Web, pages 953–964. ACM, 2013.[35] Jing Yang, Matthew O Ward, and Elke A Rundensteiner. Interring: An interactive tool for visually navigating and manipulating hierarchical structures. In Information Visualization, 2002. INFOVIS 2002. IEEE Symposium On, pages 77–84. IEEE, 2002.[36] Brian D Ondov, Nicholas H Bergman, and Adam M Phillippy. Interactive metagenomics visualization in a web browser. BMC bioinformatics, 12(1):1, 2011.[37] Robert Amar, James Eagan, and John Stasko. Low-level components of analytic activity in information visualization. In IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, pages 111–117. IEEE, 2005.[38] 韓承靜、蔡介立(民97)。眼球軌跡記錄—科學學習研究的明日之星。科學教育,310,2-11。[39] The eye tribe products. In The Eye Tribe. Last visited on 1/4/2016.[40] Stanislav Popelka, Zdeněk Stachoň, Čeněk Šašinka, and Jitka Doležalová. Eyetribe tracker data accuracy evaluation and its interconnection with hypothesis software for cartographic purposes. Computational intelligence and neuroscience, 2016.[41] Ogama, open gaze and mouse analyzer. In OGAMA. Last visited on 2/4/2016.[42] Adrian Voßkühler. Ogama description (for version 2.5). Berlin, Germany: Freie Universität Berlin, Fachbereich Physik, 2009.[43] Thinking aloud: The #1 usability tool. Last visited on 7/7/2016.[44] Talking out loud is not the same as thinking aloud. Last visited on 7/7/2016.[45] 民族誌。擷取自維基百科,自由的百科全書:https://zh.wikipedia.org/w/index.php?title=。[46] Ethnography in ux. In UX matters. Last visited on 7/7/2016.[47] Ben Shneiderman and Catherine Plaisant. Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization, pages 1–7. ACM, 2006.[48] The field guide to human-centered design.[49] Card sorting. In information and design. Last visited on 7/7/2016.[50] Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of the ACM (JACM), 21(1):168–173, 1974.[51] Paul M Fitts. The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6):381, 1954.[52] Stuart K Card, William K English, and Betty J Burr. Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a crt. Ergonomics, 21(8): 601–613, 1978.[53] I Scott MacKenzie. Movement time prediction in human-computer interfaces. In Proceedings of Graphics Interface, volume 92, page 1, 1992.[54] 魏浩翔(民104)。分享脈絡:社群媒體訊息散播行為視覺化。國立政治大學,資訊科學學系,台北市。[55] 熊凱文(民104)。基於堆疊圖方式之社群媒體階層式議題的視覺化探索架構。國立政治大學,資訊科學學系,台北市。[56] Jeff Sauro and James R Lewis. Quantifying the user experience: Practical statistics for user research. Elsevier, 2012. 描述 碩士
國立政治大學
數位內容碩士學位學程
103462004資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103462004 資料類型 thesis dc.contributor.advisor 廖文宏<br>陳百齡 zh_TW dc.contributor.advisor Liao, Wen-Hung<br>Chen, Pai-Lin en_US dc.contributor.author (Authors) 彭久芳 zh_TW dc.contributor.author (Authors) Peng, Chiu-Fang en_US dc.creator (作者) 彭久芳 zh_TW dc.creator (作者) Peng, Chiu-Fang en_US dc.date (日期) 2017 en_US dc.date.accessioned 5-Apr-2017 15:41:54 (UTC+8) - dc.date.available 5-Apr-2017 15:41:54 (UTC+8) - dc.date.issued (上傳時間) 5-Apr-2017 15:41:54 (UTC+8) - dc.identifier (Other Identifiers) G0103462004 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/108142 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 數位內容碩士學位學程 zh_TW dc.description (描述) 103462004 zh_TW dc.description.abstract (摘要) 隨著互動式資料視覺化工具越來越多,設計者需要一個方法來衡量其作品是否好用、能否被理解、使用效率高低。互動式資料視覺化需要透過使用者的互動才能觀察到資料的不同面向,再進一步產生洞見,然而現有的評估方式多僅聚焦於靜態資料圖表,設計者無法從中得知使用者的操作困難之處,並據此進行加強與改善,因此本研究提出一個整合量化分析與質化記錄的系統性評估方式,應用於互動式資料視覺化的優使性(usability)分析。本研究的方法為追蹤使用者的眼動和滑鼠操作過程,先將其記錄成量化數據,透過興趣區域的標定與將轉換使用者行為成序列後,進行序列運算和統計分析;同時,從使用者經驗研究方法得到實驗過程的質化記錄,用來輔助解釋量化分析的結果。本論文藉由兩個互動式資料視覺化工具來驗證以眼動與滑鼠追蹤評估互動式資料視覺化是可行的,我們提出了具體的實驗流程、量化紀錄與分析方式,並建議以下評估指標:吸引力、易發現性、困難度、易識別性、易理解性、精準表達程度、細部困難度、使用效率。 zh_TW dc.description.abstract (摘要) As more and more interactive data visualization tools emerge, designers need an organized evaluation method to provide timely feedback and understand user behavior. In contrast to traditional graphical presentations, interactive data visualization tools call for user manipulation to gain specific insights. It is therefore imperative to study the intermediate operation process, rather than the final outcome, to provide a critical understanding of the developed tool. Toward this objective, we propose a systematic approach combining quantitative analysis and qualitative assessment to gauge the usability of interactive data visualization tools in this research. Firstly, quantitative data including gaze and mouse movements are collected. By combining the definition of area of interest, these trajectories can be converted into user sequences, which are conveniently accessible for further statistical analysis as well as path comparison. Secondly, qualitative information obtained by observing user operation is gathered to offer additional insight and complement/support conclusions obtained from quantitative analysis. Two interactive data visualization tools are employed to examine the feasibility and universality of our experimental and analytical procedure. To conclude, we come up with several key indicators to evaluate interactive data visualization, including attraction, discoverability, difficulty, identifiability, comprehensibility, precision of expression, difficulty(detailed) and efficiency. en_US dc.description.tableofcontents 摘要 iiAbstract iii目錄 iv表目錄 vii圖目錄 viii第一章緒論 11.1 研究背景與動機 11.2 研究問題 31.3 研究流程與方法 51.4 論文架構 5第二章文獻探討 62.1 資料視覺化評估方法 62.1.1、問卷、任務 62.1.2、資料墨色比率 72.2 電腦操作量化評估方法 92.2.1、眼動追蹤分析 92.2.2、滑鼠追蹤分析 112.2.3、眼動與滑鼠追蹤綜合分析 132.3 小結 16第三章研究方法 183.1 任務設計方法 183.2 資料蒐集方法 193.2.1、眼動儀工具介紹 193.2.2、OGAMA 工具介紹 233.2.3、放聲思考法 253.2.4、觀察法 263.2.5、Card Sort 273.3 資料分析方法 283.3.1、眼動與滑鼠追蹤資料分析 283.3.2、Area Of Interest 293.3.3、使用者操作步驟序列 313.3.4、Edit Distance 313.3.5、Fitts’ Law 333.3.6、可容許序列 35第四章實驗設計與前期研究 374.1 研究特性 374.2 實驗設計 374.2.1、實驗方式與環境設定 374.2.2、實驗流程 394.3 評估指標 424.4 實驗資料 434.4.1、ShareFlow 434.4.2、TopicWave 454.5 任務設計與修正 454.5.1、任務設計 454.5.2、修正任務 484.6 前期研究 484.6.1、實驗對象 484.6.2、眼動與滑鼠位置的相關性 494.6.3、評估指標測試 504.6.4、質化結果 544.7 實驗方法修正 56第五章實驗結果與討論 605.1 實驗對象 605.2 排除異常值615.3 評估指標驗證615.3.1、吸引力 625.3.2、易發現性 625.3.3、困難度 645.3.4、易識別性 655.3.5、易理解性 685.3.6、精準表達程度 705.3.7、細部困難度 725.3.8、使用效率 765.3.9、評估指標小結 795.4 研究限制 795.4.1、實驗環境與時間限制 795.4.2、實驗對象限制 805.4.3、實驗資料限制 81第六章結論與未來展望 82參考文獻 84附錄一 實驗指示 90附錄二 前期研究任務與實驗記錄 92附錄三 正式實驗任務與實驗記錄 94 zh_TW dc.format.extent 35092562 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103462004 en_US dc.subject (關鍵詞) 互動式資料視覺化 zh_TW dc.subject (關鍵詞) 眼動追蹤 zh_TW dc.subject (關鍵詞) 滑鼠追蹤 zh_TW dc.subject (關鍵詞) 量化使用者評估 zh_TW dc.subject (關鍵詞) Interactive data visualization en_US dc.subject (關鍵詞) Gaze tracking en_US dc.subject (關鍵詞) Mouse tracking en_US dc.subject (關鍵詞) Quantitative usability evaluation en_US dc.title (題名) 基於眼動與滑鼠追蹤之互動式資料視覺化評估 zh_TW dc.title (題名) Evaluation of interactive data visualization tools based on gaze and mouse tracking en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] 陳為,沈則潛,陶煜波(民103),「視覺化資料──100% 全腦吸收大數據,直入神經元」,佳魁資訊,台北市。[2] 劉自強,黃芝瑩(譯)(民102)。「網頁互動式資料視覺化:使用D3」(原作者:Scott Murray)。台北市:歐萊禮。(原著出版年:102)。[3] Information visualization. In Wikipedia, The Free Encyclopedia. Last visited on 2/4/2016.[4] Infographic. In Wikipedia, The Free Encyclopedia. Last visited on 14:48 2/4/2016.[5] Data visualization. In Wikipedia, The Free Encyclopedia. Last visited on 14:50 2/4/2016.[6] 康仕仲(民105),資料視覺化之理論、賞析與實作。取自https://goo.gl/cWdUu0。[7] Data-driven documents. Last visited on 24/3/2016.[8] Tableau. Last visited on 24/3s/2016.[9] Scott Bateman, Regan L Mandryk, Carl Gutwin, Aaron Genest, David McDine, and Christopher Brooks. Useful junk?: the effects of visual embellishment on comprehension and memorability of charts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2573–2582. ACM, 2010.[10] Marcel Adam Just and Patricia A Carpenter. Using eye fixations to study reading comprehension. New methods in reading comprehension research, pages 151–182, 1984.[11] Martijn Tennekes and Edwin de Jonge. Tree colors: color schemes for tree-structured data. IEEE transactions on visualization and computer graphics, 20(12):2072–2081, 2014.[12] Fernanda B Viegas, Martin Wattenberg, and Jonathan Feinberg. Participatory visualization with wordle. IEEE transactions on visualization and computer graphics, 15(6):1137–1144,2009.[13] Bongshin Lee, Nathalie Henry Riche, Amy K Karlson, and Sheelash Carpendale. Sparkclouds: Visualizing trends in tag clouds. IEEE transactions on visualization and computer graphics, 16(6):1182–1189, 2010.[14] Anna W Rivadeneira, Daniel M Gruen, Michael J Muller, and David R Millen. Getting our head in the clouds: toward evaluation studies of tagclouds. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 995–998. ACM, 2007.[15] Catherine Plaisant. The challenge of information visualization evaluation. In Proceedings of the working conference on Advanced visual interfaces, pages 109–116. ACM, 2004.[16] Edward R Tufte and PR Graves-Morris. The visual display of quantitative information, volume 2. Graphics press Cheshire, CT, 1983.[17] Data looks better naked, 2013.[18] S Few and P Edge. Sometimes we must raise our voices. 2009.[19] Ohad Inbar, Noam Tractinsky, and Joachim Meyer. Minimalism in information visualization: attitudes towards maximizing the data-ink ratio. In Proceedings of the 14th European conference on Cognitive ergonomics: invent! explore!, pages 185–188. ACM, 2007.[20] James D Kelly. The data-ink ratio and accuracy of newspaper graphs. Journalism and Mass Communication Quarterly, 66(3):632, 1989.[21] Julia Kulla-Mader. Graphs via ink: Understanding how the amount of non-data-ink in a graph affects perception and learning. Master’s Thesis, Department of Information and Library Science, University of North Carolina, 2007.[22] Michael Burch, Natalia Konevtsova, Julian Heinrich, Markus Hoeferlin, and Daniel Weiskopf. Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Transactions on Visualization and Computer Graphics, 17(12):2440–2448, 2011.[23] Dereck Toker, Ben Steichen, Matthew Gingerich, Cristina Conati, and Giuseppe Carenini. Towards facilitating user skill acquisition: identifying untrained visualization users through eye tracking. In Proceedings of the 19th international conference on Intelligent User Interfaces, pages 105–114. ACM, 2014.[24] Joseph H Goldberg and Jonathan I Helfman. Comparing information graphics: a critical look at eye tracking. In Proceedings of the 3rd BELIV’10 Workshop: Beyond time and errors: Novel evaluation methods for information visualization, pages 71–78. ACM, 2010.[25] Joseph H Goldberg and Anna M Wichansky. Eye tracking in usability evaluation: A practitioner’s guide. To appear in: Hyönä, 2002.[26] Eye movement in reading. In Wikipedia, The Free Encyclopedia. Last visited on 13:06 31/3/2016.[27] Vidhya Navalpakkam and Elizabeth Churchill. Mouse tracking: measuring and predicting users’ experience of web-based content. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2963–2972. ACM, 2012.[28] Ernesto Arroyo, Ted Selker, and Willy Wei. Usability tool for analysis of web designs using mouse tracks. In CHI’06 extended abstracts on Human factors in computing systems, pages 484–489. ACM, 2006.[29] Eric Hehman, Ryan M Stolier, and Jonathan B Freeman. Advanced mouse-tracking analytic techniques for enhancing psychological science. Group Processes & Intergroup Relations, 18(3):384–401, 2015.[30] Hotjar. Last visited on 11/7/2016.[31] Jens Gerken, Peter Bak, Christian Jetter, Daniel Klinkhammer, and Harald Reiterer. How to use interaction logs effectively for usability evaluation. In BELIV, 2008.[32] Kerry Rodden and Xin Fu. Exploring how mouse movements relate to eye movements on web search results pages. Web Information Seeking and Interaction, pages 29–32, 2007.[33] Kerry Rodden, Xin Fu, Anne Aula, and Ian Spiro. Eye-mouse coordination patterns on web search results pages. In CHI’08 extended abstracts on Human factors in computing systems, pages 2997–3002. ACM, 2008.[34] Vidhya Navalpakkam, LaDawn Jentzsch, Rory Sayres, Sujith Ravi, Amr Ahmed, and Alex Smola. Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts. In Proceedings of the 22nd international conference on World Wide Web, pages 953–964. ACM, 2013.[35] Jing Yang, Matthew O Ward, and Elke A Rundensteiner. Interring: An interactive tool for visually navigating and manipulating hierarchical structures. In Information Visualization, 2002. INFOVIS 2002. IEEE Symposium On, pages 77–84. IEEE, 2002.[36] Brian D Ondov, Nicholas H Bergman, and Adam M Phillippy. Interactive metagenomics visualization in a web browser. BMC bioinformatics, 12(1):1, 2011.[37] Robert Amar, James Eagan, and John Stasko. Low-level components of analytic activity in information visualization. In IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, pages 111–117. IEEE, 2005.[38] 韓承靜、蔡介立(民97)。眼球軌跡記錄—科學學習研究的明日之星。科學教育,310,2-11。[39] The eye tribe products. In The Eye Tribe. Last visited on 1/4/2016.[40] Stanislav Popelka, Zdeněk Stachoň, Čeněk Šašinka, and Jitka Doležalová. Eyetribe tracker data accuracy evaluation and its interconnection with hypothesis software for cartographic purposes. Computational intelligence and neuroscience, 2016.[41] Ogama, open gaze and mouse analyzer. In OGAMA. Last visited on 2/4/2016.[42] Adrian Voßkühler. Ogama description (for version 2.5). Berlin, Germany: Freie Universität Berlin, Fachbereich Physik, 2009.[43] Thinking aloud: The #1 usability tool. Last visited on 7/7/2016.[44] Talking out loud is not the same as thinking aloud. Last visited on 7/7/2016.[45] 民族誌。擷取自維基百科,自由的百科全書:https://zh.wikipedia.org/w/index.php?title=。[46] Ethnography in ux. In UX matters. Last visited on 7/7/2016.[47] Ben Shneiderman and Catherine Plaisant. Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization, pages 1–7. ACM, 2006.[48] The field guide to human-centered design.[49] Card sorting. In information and design. Last visited on 7/7/2016.[50] Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of the ACM (JACM), 21(1):168–173, 1974.[51] Paul M Fitts. The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6):381, 1954.[52] Stuart K Card, William K English, and Betty J Burr. Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a crt. Ergonomics, 21(8): 601–613, 1978.[53] I Scott MacKenzie. Movement time prediction in human-computer interfaces. In Proceedings of Graphics Interface, volume 92, page 1, 1992.[54] 魏浩翔(民104)。分享脈絡:社群媒體訊息散播行為視覺化。國立政治大學,資訊科學學系,台北市。[55] 熊凱文(民104)。基於堆疊圖方式之社群媒體階層式議題的視覺化探索架構。國立政治大學,資訊科學學系,台北市。[56] Jeff Sauro and James R Lewis. Quantifying the user experience: Practical statistics for user research. Elsevier, 2012. zh_TW