dc.contributor.advisor | 江振東 | zh_TW |
dc.contributor.advisor | Chiang, Jeng Tung | en_US |
dc.contributor.author (Authors) | 李坤瑋 | zh_TW |
dc.contributor.author (Authors) | Lee, Kun Wei | en_US |
dc.creator (作者) | 李坤瑋 | zh_TW |
dc.creator (作者) | Lee, Kun Wei | en_US |
dc.date (日期) | 2017 | en_US |
dc.date.accessioned | 11-Jul-2017 11:24:58 (UTC+8) | - |
dc.date.available | 11-Jul-2017 11:24:58 (UTC+8) | - |
dc.date.issued (上傳時間) | 11-Jul-2017 11:24:58 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0104354003 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/110778 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description (描述) | 104354003 | zh_TW |
dc.description.abstract (摘要) | 當資料屬於類別型的長期追蹤資料(Longitudinal categorical data)時,除了可以透過廣義估計方程式(General estimate equation, GEE)來求解模型參數估計值外,潛在移轉分析(Latent transition analysis, LTA)法也是一種可行的資料分析方法。若資料的期數不多,也可以選擇將資料適度分群後使用羅吉斯迴歸分析(Logistic regression)法。當探討的反應變數為二元(Binary)型態,且觀察對象於每一期提供多個測量變數值的情況之下,廣義估計方程式與羅吉斯迴歸分析法的使用,文獻上常見先將所有的測量變數值加總後,以「中位數」作為分類的切割點。不同於以上兩種方法,潛在移轉分析法則是直接使用原始資料來取得觀察對象的潛在狀態相關訊息,因此與前二者的作法不同,可能導致後續的各項分析結果有所差異存在。 為了能夠了解造成中位數分類法與移轉分析法差異的可能因素,我們架構在潛在移轉分析法的模型下,以不同的參數設定來進行電腦模擬,比較各參數條件下的兩分類方法差異。結果發現各潛在狀態下的測量變數反應機率形式、第一期潛在狀態的組成比例等皆會對兩分類方法是否具有相同分類有所影響。另外,透過分析「青少年媒體使用與健康生活調查」的實際資料得知,潛在移轉分析會將大部分的觀察對象歸屬於「網路成癮」,而中位數分類法則是將大部分的觀察對象歸屬於「無網路成癮」。此外,可以注意到「沮喪」、「線上情色每星期平均使用天數」、及「父母相處狀況」這幾個控制變數與各分組結果的關聯性,於上述三種資料分析方法中有所不同。 | zh_TW |
dc.description.abstract (摘要) | Several methods can be used to analyze longitudinal categorical data, as among them Latent Transition Analysis (LTA), and Generalized Linear Models estimated by Generalized Estimating Equations (GEE) probably the most popular. In addition, if the number of periods is two, then with certain grouping of data, the Logistic Regression can also be applied to perform the analyses. When there are more than one manifest response variable for each study subject, LTA is able to classify the subjects in terms of the original manifest response variables and proceeds with necessary analyses. On the other hand, GEE method and Logistic Regression lack the flexibility, and require certain transformation to transform the manifest response variables into a categorical response variable first. One common way to form a binary response is to sum all manifest variables, and then taking median as a cut-point. In this study, we explore the differences of the classification resulted from LTA directly and using median as a cut-point through simulations. An empirical study is also provided to illustrate the classification differences, and the differences on the subsequent analyses using LTA, GEE method, and Logistic Regression approach. | en_US |
dc.description.tableofcontents | 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 本文架構 2第二章 文獻探討 3 第一節 潛在變數模型 3 第二節 廣義估計方程式 9 第三節 羅吉斯迴歸模型分析法 12 第四節 方法比較 14第三章 研究方法 15 第一節 研究設計 15 第二節 模擬實驗一:潛在類別分析與中位數分類法比較 16 第三節 模擬實驗二:潛在移轉分析與中位數分類法比較 20第四章 模擬分析結果 23 第一節 分析結果:模擬實驗一 23 第二節 分析結果:模擬實驗二 25 第三節 小結 26第五章 實證研究 27 第一節 實證主題探討 27 第二節 資料來源與研究母體 28 第三節 變數定義 28 第四節 實證分析結果 31 第五節 小結 44第六章 結論與建議 45 第一節 研究結論 45 第二節 研究建議 46參考文獻 47附錄一、模擬實驗一的相同分類比率結果 48附錄二、實證分析的潛在移轉分析報表 49附錄三、青少年媒體使用與健康生活調查問卷(部分) 53附錄四、程式碼 56 | zh_TW |
dc.format.extent | 7604320 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0104354003 | en_US |
dc.subject (關鍵詞) | 長期類別型追蹤資料 | zh_TW |
dc.subject (關鍵詞) | 潛在移轉分析法 | zh_TW |
dc.subject (關鍵詞) | 中位數分類法 | zh_TW |
dc.subject (關鍵詞) | 廣義估計方程式 | zh_TW |
dc.subject (關鍵詞) | 羅吉斯迴歸分析法 | zh_TW |
dc.subject (關鍵詞) | Longitudinal categorical data | en_US |
dc.subject (關鍵詞) | Latent transition analysis | en_US |
dc.subject (關鍵詞) | Median | en_US |
dc.subject (關鍵詞) | Generalized estimating equation | en_US |
dc.subject (關鍵詞) | Logistic regression | en_US |
dc.title (題名) | 潛在移轉分析法與中位數法在長期追蹤資料分組的差異比較 | zh_TW |
dc.title (題名) | On classification of longitudinal data ─ comparison between Latent Transition Analysis and the method using Median as a cutpoint | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | 1.Chang, F.C., Chiu, C.H., Lee, C.M., Chen, P.H., and Miao, N.F. (2014). Predictors of the initiation and persistence of Internet addiction among adolescents in Taiwan. Addictive Behaviors, 39, 1434–14402.Chung, H., Park, Y.S., and Lanza, S.T. (2005). Latent transition analysis with covariates: pubertal timing and substance use behaviours in adolescent females. Statistics in Medicine, 24, 2895-29103.Collins, L.M., and Wugalter, S.E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27, 131-157.4.Diggle, P.J., Heagerty , P., Liang, K.Y., and Zeger, S.L. (2002). Analysis of longitudinal data (Second Edition). Oxford University Press.5.Kleinbaum, D.G., and Klein, M. (2010). Logistic regression: a self-learning text (Third Edition). Springer Dordrecht Heidelberg London New York.6.Lanza, S.T., Dziak, J.J., Huang, L., Wagner, A.T., and Collins, L.M. (2015). Proc LCA & Proc LTA users` guide (Version 1.3.2). University Park: The Methodology Center, Penn State. Available from methodology.psu.edu.7.Lazarsfeld, P.F., and Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.8.Liang, K.Y., and Zeger, S.L. (1986). Longitudinal Data Analysis Using Generalized Linear Models. Biometrika, 73, 13-229.SAS Institute Inc. (2016). SAS/STAT® 14.2 User’s Guide. Cary, NC: SAS Institute Inc. | zh_TW |